HONEYWELL

LEVEL 68
INTRODUCTION
TO PROGRAMMING
ON MULTICS

SOFTWARE



LEVEL 68
INTRODUCTION TO PROGRAMMING ON MULTICS

SUBJECT

Introduction to Programming in the Multics Operating System Environment,
Intended as a Guide for Applications Programmers

SPECIAL INSTRUCTIONS

This manual presupposes some basic knowledge of the Multics operating
system. This information can be found in the 2-volume set, New Users’ Introduc-
tion to Multics (Order Nos. CH24 and CH25).

This manual supersedes AG90, Revision 2, which was titled Multics Program-
mer’s Manual. Together with the 2-volume set, New Users’ Introduction to
Multics, it supersedes AL40, Revision 1, which was titled Multics Introductory
Users’ Guide. The manual has been extensively revised and does not contain
change bars. '

SOFTWARE SUPPORTED
Multics Software Release 9.0

ORDER NUMBER
AG90-03 July 1981

Honeywell



PREFACE

The purpose of this manual is to introduce the Multics environment to
applications programmers who have experience on another operating system but are
new to Multics.

It is very important that you understand exactly who this manual is for,
and what assumptions this manual makes about its audience, before you begin to
use it.

The intended audience of this manual is applications programmers. It is
assumed that you have programmed on some other system(s) and that you have some
basic knowledge of at least one higher level language (COBOL, FORTRAN, PL/I,
etc.). No attempt is made here to teach you how to program. This manual is
only intended to show you how to do the things you know how to do on another
system on Multics.

As an applications programmer, you look at an operating system from the
viewpoint of some programming language. This manual does not attempt to discuss
the use of any particular language on Multies, but rather, concerns itself with
those practices which are appropriate no matter which language you use. For
information on specific languages you should refer to +the Language Users'
Guides. The names of these guides are included in the 1ist of useful manuals
for new programmers given at the end of this preface.

This manual assumes that you are registered on Multics, and that you know
how to log in and use a terminal. It also assumes that you have some general
familiarity with the fundamental concepts and facilities of the Multics system.
This information is available in the following publications:

New Users' Introduction to Multics - Part I Order No. CH2Y4
New Users' Introduction to Multics - Part II Order No. CH25

You should feel comfortable with the wuse of segments, directories, text
editors, access control, commands, and active functions. If you don't, you
should review the manuals listed above, as no review of this material will be
presented here.

The information and specifications in this document are
subject to change without notice. This document contains
information about Honeywell products or services that may
not be available outside the United States. Consult your
Honeywell Marketing Representative.

(:» Honeywell Information Systems Inc., 1981 File No.: 1L13

AG90-03



Section 1 of this manual offers an overview of the Multics operating system
in general terms, to give you some idea of why programming on Multics may be
different from working on other systems.

Section 2 offers a step-by-step approach to the essentials of programming
on Multies. It shows you how to create, compile, execute, revise, and document
your programs in this environment, how to manipulate your segments, and how to
create storage system links. Sample terminal sessions are alsoc included.

Section 3 takes you one step further by showing you the wuses of dynamic
linking on Multics.

Section 4 provides you with an introduction to Multics input/output
processing, showing you how to use the terminal for I/O and how to begin using
I/0 commands.

Section 5 discusses the use of a Multics debugging tool.

Section 6 discusses the use of a Multics performance measurement tool.

Section 7 explains the Multics absentee facility, which offers capabilities
similar to batch processing on other systems.

Section 8 offers a reference to all of the Multies commands by funetion,
including a brief description of each command.

The appendixes of this manual contain material which is specific to a
particular language, somewhat advanced, or useful only to certain users.

Appendix A shows you how to wuse Multiecs to best advantage in PL/I
programming.

Appendix B offers a step-by-step explanation of a PL/I text editor program.
(This is for people who are ready to begin systems programming work.)

Appendix C briefly introduces you to various Multics subsystems.

Appendix D shows you how to use the Edm text editor.

The information presented here is a subset of that contained in the primary
Multics reference document, the Multics Programmers' Manual (MPM). The MPM
should be used as a reference to Multics once you have become familiar with the
concepts covered in this introductory guide. The MPM consists of the following
individual manuals:

Reference Guide Order No. AG91
Commands and Active Functions Order No. AG92
Subroutines Order No. AG93
Subsystem Writers' Guide Order No. AK92
Peripheral Input/Qutput Order No. AX49
Communications Input/Output Order No. CC92

iii AG90-vu3




Throughout this manual, references are made to the MPM Reference Guide, the
MPM Commands and Active Functions, the MPM Subroutines, and the MPM Subsystem
Writers' Guide manuals. For convenience, these references are as follows:

MPM Reference Guide

MPM Commands

MPM Subroutines

MPM Subsystem Writers' Guide

Other Multics manuals of interest to new programmers are listed below.

L Languages:
Multics APL Order No. AK95
Multics Basic Order No. AM82
Multics COBOL Users' Guide Order No. AS43
Multies COBOL Reference Manual | Order No. ASHy
Multies FORTRAN Users' Guide Order No. CCT70
Multics FORTRAN Reference Manual Order No. ATS8
Multics PL/I Language Specification Order No. AG94
Multics PL/I Reference Manual Order No. AM83
® Subsystems:
Multics FAST Subsystem Users' Guide Order No. AU25
Multics GCOS Environment Simulator Order No. ANO5
Multics Graphics System Order No. ASY40
Logical Inquiry and Update System
Reference Manual Order No. AZ49
Multics Relational Data Store (MRDS)
Reference Manual Order No. AWS53
Multics Report Program Generator
Reference Manual Order No. CC69
Multices Sort/Merge Order No. AW32
WORDPRO Reference Guide Order No. AZ98
) Micellaneous:

Multics Pocket Guide - Commands
and Active Functions Order No. AW17

Index to Multics Manuals Order No. AN50

The Multies operating system is referred to in this manual as either
"Multics" or "the system". The Emacs, Qedx, Ted, and Edm text -editors are
referred to as "Emacs", "Qedx", "Ted", and "Edm" respectively.

iv AG90-03



CONTENTS

Section 1 The Multics Approach o o o o o o o o &

Segmented Virtual Memory . . . . . .

Process, Address Space, and Execu

Point . & ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o .

Segments and Addressing . . . . .

Dynamie Linking . . o« e . o« o

Controlled Sharing And Securlty .

Access Control Lists . . . . . .

Administrative Control . . . . .
Section 2 Programming on Multics . . . . .
Designing and Writing Programs

Source Segments . . . . . .
Compiling Programs . . . . .
Object Segments . . . . .
Executing Programs . . . . .
Some Results of Execution
Revising and Documenting Progra
Sample Terminal Sessions . .
A Note on Examples .
Archiving Segments . . .
Binding Segments . . . .
Links & ¢ o ¢« ¢ o o o &

* e o o o "1- o« o o
e o o s o e e s o e s e
e ¢ o o o s o e s o o s o

Section 3 Dynamic Linking . « o« o« ¢« o o o o &
A Naming Convention . . . . . .
Search Rules . . . e e o o o

A Note on Inltlated Segments
Uses of Dynamic Linking . . . .
Search Paths . ¢« ¢ ¢« ¢« ¢ o o o &

Section 4 Input/Output Processing . . .
The Five Basic Steps Of Input/Output
Using The Terminal For I/O . . . . .
Using Segments As Storage Files . .
Using I/0 Commands And Subroutines .
Card Input and Conversion . . . . .

Section 5 A Debugging ToOl .+ & ¢ o o o o o o o «
The Stack .« ¢« ¢ ¢ ¢ o ¢ o o o o o «
Probe . ¢ o o o o o o o o o o o o &

Section 6 A Performance Measurement Tool . . . .
Section T Absentee Facility o« o o ¢ o o o o o o o«
v

o+

e o o o o o e e

e o ¢ o o o

[e]

e o o o ¢ e S e e

e 6 o o e e & o o o 2 e o

e e o ¢ o o o o & e o o+ o a o o o o o

Page

ma oo -

NN o

— -
[ B O A |

RSN QU T (T QT G
[ D I B | [ ]

[ T T
= =2 000N ONVNIWN — —
— —

|
~NUTW a2 o

]
—_ s OOUIN) —

N o

[
[\ 5 [QUE T |

~l Clh (SR, R0, EEEEEELE WWWWWW NN NN NN NN
—

[}
—

AG90-03



Section 8

Appendix
Appendix

Appendix

Appendix

Index

Multics Subsystems . . . . .

The Edm Editor . . . .

CONTENTS (cont)

Reference to Commands by Function . . . .

Access to the System . . .
Storage System, Creating and Edltlng
Segments . + ¢ ¢ ¢ s 6 e e e o s e
Storage System, Segment Manipulation
Storage System, Directory Manipulation
Storage System, Access Control . . . .
Storage System, Address Space Control
Formatted Output Facilities . . . .
Language Translators, Compilers, and
Interpreters .« .+ ¢ o ¢ ¢ o ¢ o o o
Object Segment Manipulatioen . . . . .
Debugging and Performance Monitoring
Facilities . e e e s e e e
Input/Output System Control . .
Command Level Environment . . .
Communication Among Users . . .
Communication with the System .
Accounting « « ¢« ¢ ¢« ¢ 4o ¢ ¢ o o
Control of Absentee Computations
Miscellaneous Tools . . . « « .

Using Multics to Best Advantage . . . . .

A Simple Text Editor .« ¢ ¢ « o« o o « o &«

Data Base Manager . . . .
Fast o o« ¢ ¢ o o o o o o &
Gecos Environment Simulator
Graphies . + + ¢« ¢ ¢« o« o &
Logical Inquiry and Update
Report Program Generator .
Sort/Merge « o« ¢ ¢« + o« o
Wordpro .« ¢ o o o o o o &

® % e o o v e e o
® 8 o o 8 o e e o
* o o o o + o * o
e &« o ® o o ° ® o
e ® o o o o o o+ @
* o o 8 o ¢ o o o

Requests . « & ¢« ¢ ¢ o ¢ & & .

Guidelines « « ¢ ¢« &« ¢ ¢ o .

Request Descriptions . . . . .
Backup (-) Request . . . .
Print Current Line Number (=) Requ

Comment Mode (,) Request
Mode Change (.) Request
Bottom (b) Request . .
Delete (d) Request .
Find (f) Request . .
Insert (i) Request .
Kill (k) Request . .
Locate (1) Request .
Next (n) Request . .
Print (p) Request . .
Quit (q) Request . .
Retype (r) Request .
s

Substitute (s) Request
Top (t) Request . .
Verbose (v) Request
Write (w) Request .

@ 6 8 2 e o e o o e e e v * e N s 0 e

e o o & o o 8 & e o e e e e e s rw e »
e ® © o o ° ® ¢ & s o o s & o s (e @ e s o

e ® © & o o ®» o o o o 9o o ¢ 8 o (Do o e o =

e & e o o o o & e e o o o o o o

e o e ® ® 9 o ® o ¢ ° e o * .

vi

® & o ® & v e e @

e 8 @ @ 6 ¢ & ° o o o o o o o o ctoe o o o ¢

« o o

e ¢ e o o o o o

s e o ® e e o ° o

e ® @ 8 e ® e ° 0 e e e ° & e e o 0 ° e o o

o

[\
o0

(¢

1
-

9 ?)Olo 00 00 00 C0 o o oo o
L L |
oV [SXRN R U JUSH \V )]

1
- = OO OO

[ Nej

©o0 00 OO CO GO OO GO OO
] | 1
—

I
s

(L
NPV N = ===

| L L D I A I L
WOOOI-JOONAOARUINIUIEEEWWWNDND = =

UUUUUUUUUUUUUUUU?UUUUU QOO0 0O0O0 w b

-
1
—

AG90-03



Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure 6

Figure

[ |
WN = N Ul W N
o e o

1
.

FEEWNDND A - s
}

CONTENTS (cont)

ILLUSTRATIONS

Traditional System vs. Multies Virtual Memory

Processes Sharing a Segment . . . . . . . .
Two-Dimensional Address Space « .« . « . . .
The Life of a Segment . . . . . . .
Resolving a Linkage Fault (Snapping
Sample Terminal Session #1 . . . .
Sample Terminal Session #2 .
Initiated Segments . . . . .
Flow of DPata . . . . . . . .
Standard Attachments . . . . .« .
Attachments After Execution of file output
Command « ¢ ¢« v o o 4 v v e e e e e e e
State of Stack . . . . . . . 4 0 0o ...
Allocation of Stack Frames . . . . . . . .
Use of profile Command With -list Control
Argument . . .+ . . . . 0 . . e e e .
Interactive vs Absentee Usage . . . . . . .

Link)

P )

e e o

o e s o
.
.

. s e e

vii

o o o

Page

L R T B N |
ONW = = \O =0 oUW
o -

U
=N
w

-~ ON Ul Ul 4= FEWMNON 2 @A a
[}

]
N =

AG90-03






SECTION 1

THE MULTICS APPROACH

The Multics approach is quite different from that of a traditional batch
operating system. The intent of this section is to show you how Multiecs is
different, by giving you a general overview of the system's "personality", then
describing in more detail three of its major characteristics: segmented virtual
memory, dynamic 1linking, and controlled sharing and security. As these
characteristics are discussed, important concepts associated with each will be
introduced and explained. Familiarity with these concepts will help you when
you read later sections of this manual and begin to program on Multiecs.

Multies is a large, powerful, well-established system, which is constantly
being refined, and provides a wide range of commands, languages, and subsystems.
Despite its size and complexity, Multics is easy to learn and use. It has been
designed to serve a wide variety and number of users, all cooperating and sharing
resources. Multics offers its users the following advantages:

] support for online usage: Multics has been designed to support online
processing as well as batch processing. You can accomplish all of
your programming tasks as either an interactive (online) user or an
absentee (batch) user. Applications, debugging tools, data base
management facilities, administrative tools and utilities are all
accessible online. 1In one terminal session, you can write, compile,
execute and debug your program. (See "Sample Terminal Sessions" in
Section 2, and "Probe" in Section 5.)

L ] consistent user interface: A great deal of thought has gone into
making similar parts of Multies work in similar ways. For example,
common control arguments such as -all and -brief are used with many
different commands, and in each case, the control argument performs a
similar function. In addition, all parts of the system have been
designed to work together.

] uniformity of control language: Batch processing on Multics is supported
by the absentee facility (described in Section 7). An absentee job is
processed like an interactive terminal session; it's directed by the
same language as that used for interactive jobs. In other words, no
special job control language (JCL) is ever required on Multies. The
system commands and routines provide the logical branching, conditional
execution, input/output control, and file system specifications necessary
to direct any job.

ease of use: On Multics, users are not asked to give information or
make decisions ahead of time. There are many examples of this. You
don't have to know or specify either a segment's size or its location
to use it. You don't have to make your need for tape drives and
similar resources known in advance. Intelligent defaults mean that
you need not create a correspondence between a file and an I/0 name.
Dynamic linking (described later in this section) means that you need
not name or prefetch programs you want to execute. You can set up a
temporary working array for your PL/I or FORTRAN program in its own
segment, without specifying how much Space you need or worrying that
the array will get too big. You will find that this lack of required
prespecification greatly simplifies your use of the system.

1-1 AG90-03



SEGMENTED VIRTUAL MEMORY

The most significant difference between the Multics programming environment
and that of most other contemporary computer programming systems lies in its
approach to addressing online storage. Most computer systems have two sharply
distinet environments: a resident file storage system in which programs are
created, and translated programs and data are stored; and an execution environment
consisting of a processor and a "core image", which contains the instructions
and data for the processor. Supervisorproceduresprovidesubroutinesforphysically
moving copies of programs and data back and forth between the two environments.

In Multics, there is one conceptual memory, which is known as the virtual
memory. The traditional distinction between secondary storage and main memory
has no meaning, because a single infinitely large memory is simulated by the
software, with data stored in finite segments which appear to be in memory at
all times. Figure 1-1 illustrates this difference between a traditional system
and the Multics virtual memory.

With the line between the two traditional environments deliberately blurred,
program construction on Multics is simplified: most programs need only be cognizant
of one environment instead of two. This blending of the two environments is
accomplished by extending the processor/core image environment. In Multies,
your share of the processor is termed a process, and your core image is abstracted
into what is called an address space. In a sense, each segment is a core image,
and your process can have lots of them.

The easiest way to think about the terms process and address space is to
imagine your process as a private computer and your address space as a private
memory for your process to work in. (See "Process, Address Space, and Execution
Point" next in this section.)

Another important difference between the Multies environment and that of
most other systems is that an address in Multies has two parts: a segment
identifier and a location, or offset, within the segment.

Traditional Address

Segment Offset Multics Address

(See "Segments and Addressing" later in this section.)

1-2 AG90-03



FILES

CORE IMAGE
of
RITE
?‘EP‘D‘\N
N L
TRADITIONAL SYSTEM
USER 1 l————- USER 2 —————
SEG 1 SEG 2 SEG 3 - SEG 4 SEG 1
0 0 0 0 0

MULTICS VIRTUAL MEMORY

Figure 1-1. Traditional System vs. Multics Virtual Memory

1-3 AG90-03



Process, Address Space, and Execution Point

When you log in to the system, you are allocated system resources in an
environment known as a process. A process consists of a collection of segments
called an address space, over which a single execution point is free to roam
(i.e., to fetch instructions and make data references).

4 process executes programs on your behalf, either directly in response to
your instructions or automatically as part of supporting the programs you invoke
directly. The programs executed on your behalf and the data they reference make
up your address space, and that address space combined with the action of executing
those programs make up your process. Your execution point is whatever is executing
at any moment.

Space within the virtual memory is dynamically assigned to your address
space. Its contents are a function of the sequence of instructions that are
processed between the time you log in and the time you log out, and thus it
dynamically shrinks and grows as necessary. Your address space is different
from the usual core image in that it is larger and it is segmented. A segment
may be of any size from 0 to 255K, and an address space may have a large number
of segments (typically about 200). Usually, each separately translated program
resides in a different segment; collections of data which are large enough to be
worthy of a separate name are placed in a segment by themselves. The system
assigns attributes (access control and length, for example) to each of these
segments based on their logical use. There is a distinct address space for each
user who is logged in, even though many users may share the very same segments
in their address spaces.

Your process is created when you log in, and destroyed when you log out,
when you request a new process with the new_proc command, or when some kinds of
errors occur. You may view your process as if all system resources are dedicated
to it alone--as if you have a processor all to yourself--when in reality, all
resources are being shared among many processes. Not only are there other interactive
processes running, there are also absentee processes running as "background" to
the interactive ones, and there are various daemon processes running, which are
associated with the normal operation of the system and not connected to any
user. All of these processes are continually cooperating and competing for
processor time and main storage resources. The processor is multiplexed between
processes according to rules defined for the system as a whole, with the object
of sharing resources in an equitable manner.

Processes can share with each other, and this sharing is of two types.
First, any references to a segment by more than one process are references to
the same segment. Second, a large part of the address space in all processes is
identical, because the parts of the system shared by all users are given segment
numbers (described below) that are the same for all processes. Figure 1-2 illustrates
this sharing of segments.

You should remember that each process's virtual memory is private to it.
This means that changes made to one process's virtual memory assignments do not
affect those of other processes. In addition, when a segment is being shared,
it means that multiple users may not only read the segment, but also write it.

1.1 AG90-03



z
USER 1
PROCESS 1
z
- ==
USER 2 PROCESS 2

Figure 1-2. Processes Sharing a Segment

1-5 AG90-03



Segments and Addressing

It's important to understand that a Multics segment is not a file. A
segment can be addressed directly, like memory. It doesn't have to be read or
written record by record like a file on other systems. On Multics, everything
is in a segment:

program source code
program object code
data files

mail boxes

work areas
temporary storage
exec_coms

There are two main reasons why segments are used in Multics. The first is
that they make it possible for all your process's programs and data to be easily
and directly addressable. The second is that they make it possible to protect
and share programs and data by controlling access at the hardware level. (For
more on this, see "Controlled Sharing and Security" later in this section.)

The segment is often described as the basic unit of storage in Multics
because all locating (addressing) of data in the system is done in terms of
segments. The physical movement of information between main memory and secondary
storage is fully automatic in Multiecs (it is done by the paging mechanism). The
usual complex combination of file access methods and job control language which
you are probably used to 1is replaced by a simple two-dimensional addressing
scheme. This scheme involves the user-assigned symbolic name of the segment
(its pathname), and the address of the desired item within the segment. Even
relative addresses are usually given in symbolic terms through the data description
facilities of the language you're using. Thus, each segment appears to its user
as independent memory, symbolically located. Segments don't have to be in specific
storage locations. They can be relocated anywhere in memory and grow and shrink
as need be.

1-6 AG90-03



References to any portion of your address space consist of a segment name
and a location within the segment; all addresses are interpreted as offsets
within segments. To increase the efficiency of a storage reference, a segment
number becomes associated with a segment name when the segment 1is initiated
(added to your process's address space). A segment is said to be known to a
process when it has been uniquely associated with a segment number in that
process. The segment number is a temporary alias for the segment name, which is
more easily translated into a storage address by the hardware. When you write:

<{symbolic_name> | [symbolic_offset]

the hardware uses:

<{segment_number> | [offset number]
The association between a segment name and a segment number is retained until
the segment is terminated (removed from your process's address space). If it is
terminated and initiated again, the number will be different. (See the discussion
of initiating and terminating segments in Section 3.) Thus, every address or
pointer is a pair of numbers: the segment number and the offset within the
segment. This pair of numbers forming an address represents the coordinate of a
location in the two-dimensional address space. See Figure 1-3 for a graphic
representation of a two-dimensional address space. See Figure 1-4 for an
illustration of the life of a segment.

A program can create a segment by issuing a call to the system specifying
the symbolic name as an argument. Different users can incorporate the same
segment into their programs just by specifying its name. (A program need not
copy a segment to use it.) A program can address any item within a segment
using "segment, 1" where segment is the symbolic name of the segment and 1 is
the location of the desired item within the segment. The ALM (Multics assembly
language) instruction shown below illustrates a symbolic reference to location
"x" in segment "data":

lda datas$x

For more information on the Multics virtual memory, see the MPM Reference
Guide.

DYNAMIC LINKING

Many programs make calls to external subroutines or use external variables.
On most systems, these external references are resolved during loading or linkage
editing. When the program is loaded into memory, external subroutines are loaded
from libraries or user data sets, and storage is allocated for external variables.
On Multics, external references are resolved when the program runs; i.e., the
point at which something is used is the point at which it is found. This means
that a compiled program on Multiecs is directly executable. Segmentation is what
makes this possible - it gives each segment a "zero" location, so no relocation
is necessary.

1-7 AG90-03



SUPERVISOR USER PROGRAMS, DATA, COMMANDS

¢

i

__A, A \
256K v
* i
1
]
E :
Z 1
= :
9 '
i 1
4 1
2 g
E — : —
- '
w '
g ]
w ]
o || . —T
X —_—
A
% Ld]|le=fjn| D2
2 gEjele|E
£ s|lElE]le
€ glelelé
2 AR
0

SEGMENTS —_—

Figure 1-3. Two-Dimensional Address Space

1-8 AG90-03



Note 1.

Note 2.

create

initiate; per process

(activate)

page 1 in memory

has has
exists segment page
number table
pages 2 and 4 in memory
——— (deactivate)
terminate

b delete

Figure 1-4. The Life of a Segment
Events in parentheses are not user visible.

Segments are automatically divided by the hardware into storage units
known as pages, with a fixed size of 1024 words. (One word is equal
to 36 bits or 9-bit bytes.)

1-9 AG90-03



Dynamic linking is accomplished by having the compiler leave in the object
code of a compiled program an indirect word with a "fault tag" which, if used in
an indirect address reference, causes a linkage fault to the dynamic linker.
The linker inspects the location causing the fault, and from pointers found
there, locates the symbolic name of the program being called or the data segment
being referenced. It then locates the appropriate segment, maps it into the
current address space, and replaces the indirect word with a new one containing
the address of the program or data entry point, so that future references will
not cause a linkage fault. When the system comes across an unresolved reference,
it uses what are known as search rules (described in Section 3) to find the
needed segment and establish the necessary link. This process is known as snapping
a link. To see how the linkage fault caused by the ALM instruction mentioned
previously would be resolved, refer to Figure 1-5.

With dynamic linking, you don't pay the cost of resolving references (for
example, calls to error routines) unless they are actually needed. If a subroutine
is never called, it doesn't even have to exist, and the main program will still
run correctly. An item in the file system has to be in your address space for
you to use it, but it doesn't have to be copied and brought into memory before
execution. The virtual memory guarantees that any item you reference 1is where
the processor can address it directly.

Dynamic linking simplifies your programming by totally eliminating the loading
step. It also eliminates the need for a complicated job control language for
retrieving, prelinking, and executing programs, and for defining and locating
input/output files.

For more information on dynamic linking, see the MPM Reference Guide.

CONTROLLED SHARING AND SECURITY

Multies permits controlled sharing of the operating system software and
libraries, the language compilers, the data bases, and all user code and data.
You can create links to other programs and data, give and revoke access, directly
access any information in the system to which you have access, and share a
single copy in core.

1-10 AG90-03



ALM program

Ida data$x

)

compilation

linkage (before)

=

I indirect word with fault tag
x

'\

Figure 1-5

execution

linkage (after)

s

“data”

new indirect word

. Resolving a Linkage Fault (Snapping a Link)

1-

11

AG90-03



Access Control Lists

One way of controlling the sharing and security of information is by using
access control 1lists. ACLs, as you have already learned in the New Users'
Introduction to Multics, define the access rights for each segment and directory.
You can grant permission to use your segments and directories by individual
user, by project, by instance (interactive/absentee), or by combinations of these.
You can also grant different access to different users of the same segment. A
good example of using ACLs is a compiler which resides in a segment that can be
executed but not written.

For more details on access control, see the MPM Reference Guide.

Administrative Control

Another kind of information control is administrative. Multiecs administration
defines three levels of responsibility: system, project, and user. A system
administrator allocates system resources among the projects on his system; a
project administrator allocates project resources among the users on his project;
a user can manage his own data through storage management and access controls.

Your project administrator can define the environment of the users under
his project. He can give you complete control in creating your own process, or
he can limit the requests and commands available to you. He can determine the
dollar limit that you may incur in a single month (or other period of time), and
arrange things so you'll be automatically logged out if you exceed this limit.
You won't be able to log in again until the next month begins or the limit is
changed. He can also determine several other items, including whether a user
can preempt others, specify his own directory, or have primary or standby status
when logging in.

You yourself also have flexibility in shaping your programming environment
on Multies. A good example of this is the special command processor which
allows you to make abbreviations for your frequently used commands (abbrev).

For more information on Multics administrative features, refer to one of
the manuals in the Multies Administrators' Manual (MAM) set:

Project Administrator Order No. AK51
Registration and Accounting Administrator Order No. AS68
System Administrator Order No. AKS50

1-12 AG90-03



SECTION 2

PROGRAMMING ON MULTICS

Programming on Multics is very different from programming on other systems.
Many of the constraints and restrictions you may be used to are simply removed.
The system provides -high-level terminal control, data base management, I/O
interfaces, and data security. There is no need for overlays, chaining or partitions.

This section explains how to write, compile and execute programs in the
Multics environment. It also offers advice on revising and documenting programs,
manipulating segments, and creating storage system links.

DESIGNING AND WRITING PROGRAMS

Let's say you've been given specifications for a program which will compute
the sum of three numbers. Obviously, this is not a realistic task for a computer,
but it will provide us with a very simple example.

Of course, the first thing you need to do is to develop a design for your
program, be it a flow chart, a functional diagram, a hierarchy, or whatever.
Once you have a good design, the next step is to decide which language you will
write your program in. The following programming languages are available on
Multics:

® APL: A terse, powerful language, with strong data manipulation
capabilities.

® BASIC: A simple language for beginners, which can perform string and
arithmetic operations without much difficulty.

® COBOL: A business oriented, high-level, English-like language with many
string and arithmetic capabilities.

® FORTRAN: A high-level, scientific language designed mostly for arithmetic
applications, with very limited character manipulation capabilities.

® PL/I: A very powerful, high-level language that offers almost total
control over the operations of the program, and has many capabilities
to manipulate characters and perform arithmetic operations.

(ALM, the assembly language on Multies, is also available, but is not recommended
for general use.) For this program, let's say you choose PL/I. The code for
your program might look like this:

2-1 AG90-03



simple_sum: proc options (main);
/¥ this program computes the sum of three numbers set in the program,
then prints the answer at the terminal ¥/

declare
sysprint file, /¥ the terminal output ¥/
first_no fixed binary /¥ the first number ¥/
second_no fixed binary /¥ the second number */
third_no fixed binary /% the third number ¥/
the_sum  fixed binary /¥ the answer */

NN NN
NN
-3 ] ~1~3
N N N N
wew w w

/¥ set the three numbers */
first_no = 123;
second_no = 456;
third_no = 7893
/% add them up ¥/
the_sum = first_no + second_no + third_no;

/¥ print the answer ¥/

put skip list ("The sum of the three numbers is:", the_sum);
put skipj

end simple_sum;

Notice the use of sysprint for the terminal output. For more information on
this, see "Using the Terminal for I/0" in Section 4.

Source Segments

The next step is to create a segment containing your code. You can input
your code by using any one of several text editors. Two editors you are already
familiar with are Qedx and Emacs. Detailed information on these editors is
available in the Qedx Users' Guide (Order No. CGU0) and the Emacs Users' Guide
(Order No. CH27) respectively. Of special interest to programmers are the
programming language modes available in Emacs. The FORTRAN, PL/I and ALM modes
provide editing environments which facilitate the creation, formatting and debugging
of programs written in these languages.

Two more editors will be introduced here. One is Edm. This is the most
basic Multics editor and is described in Appendix D of this manual. The other
is Ted. Ted is a more advanced version of Qedx, which offers many advantages.
These include more flexibility in addressing characters within a line, two types
of input mode, regular and bulk, and more ways of manipulating buffers. Ted is
a programmable editor, which means that you can write character manipulation
programs in the Ted editor language. Other Ted features include sorting and
tabbing capabilities, the ability to translate letters from upper to lower case
and vice versa, and the ability to have lines fill and adjust. For more information
on Ted, use the help command.

The segment that your source code is stored in is called a source segment.
Once your source segment is created, you should give it an entryname which
follows the Multics convention for such names. This convention is to add a dot
suffix to the end of the name indicating which language the program is written
in. Thus, the form for a source segment entryname is:

2~-2 AG90-03



program name.lang name

A good name for your program would therefore be:
simple_sum.pl1

Some other examples of program names are:

ran_num_gen.basic
payroll.cobol
square_root.fortran

(Remember that upper and lower case characters are not interchangeable on Multics.
Thus, "payroll.cobol" and "Payroll.cobol" are two different names. See the MPM
Reference Guide for more information on naming conventions.)

You will probably find it useful to create several different directories
for yourself, each containing a different sort of segment. For example, you
could have one directory for the final (debugged) versions of your programs, one
directory for the programs you are writing or revising, another directory for
test data, etc. If you write programs in several different languages, you could
also have directories for programs in each language. (Remember that your segments
are not physieally located in directories any more than you are physically in
the phone book. When a segment is said to be "in" a directory, it means that
the directory contains an entry for the segment.)

COMPILING PROGRAMS

Multies provides a compiler for each higher level language it supports.
Compilers are system programs which translate source code into object code,
machine level language that is executable by the hardware. The input to a
compiler is a source segment. The output of a compiler is a corresponding
object segment. (This discussion does not apply to APL, which is an interpreted
language. There is no APL compiler and no APL object segment.) Your working
directory is always assumed to be the location of the source segment you want to
compile, and the intended location of the object segment you want to create,
unless you say otherwise.

To execute a compiler, you invoke it as a command, with a command 1line
which looks like this:

language_name path {-control_arguments}

where language name is the name of the language your program is written in, path
is the entry name of your source segment, and {-control_arguments} are any of a
number of optional control arguments you can supply to the compiler. Several of
these control arguments instruct the compiler to create a listing segment in
your directory. (No compile listing is produced by default.) This segment has
the same entryname as your source segment, but with a suffix of "list" instead
of "pli1" or whatever. A listing segment contains a line-numbered list of your
source program, plus information that is useful for understanding, debugging,
and improving the performance of your program.

The control arguments which produce a listing segment are:
-list
produces a complete source program listing including an assembly-like listing

of the compiled program. Use of this control argument significantly increases
compilation time and should be avoided whenever possible by using -map.

2-3 AG90-03



-map
produces a partial source program listing of the compiled program which
should contain sufficient information for most online debugging needs.

Another useful control argument is:

-table

generates a full symbol table for use by symbolic debuggers. The symbol
table is part of the symbol section of the object program (discussed later
in this section) and consists of two parts: a statement table that gives
the correspondence between source line numbers and object locations, and a
name table that contains information about names actually referenced by the
source program. This control argument usually causes the object segment to
become significantly longer, so when the program 1is thoroughly debugged, it
should be recompiled without -table.

See the MPM f‘f\mmanr‘e nnder the an

[SHENVE §1 [y Py LOoLHianUs Wil vile Sp

er for detailed information on all

c compil
they provide. Also see the various

ecifi ompi
of the control arguments and the information

Language Users' Guides.
So, your command line for compiling your program might look like this:

! pl1 simple_sum.plt -map

In this and all interactive examples in this manual, an exclamation point
is used to indicate a line that you type at the terminal. You do not type the
exclamation point, nor does Multics type it as a way of prompting you. It is
strictly a typographical convention, to distinguish between typing done by you
and typing done by Multics.

In reality, you don't have to type the dot suffix component of your entryname.
The compiler assumes that the input is a source segment, and will search your
working directory (or whatever directory you're using) for the segment with the
appropriate suffix. Thus:

t pl1l simple_sum.pl]
means exactly the same to the compiler as:
! pl1l simple_sum
If your source code is clean and the compile is successful, an object

segment is placed in the directory you're using, with the same entryname as your
source segment, but stripped of the language name suffix:

ran_num_gen.basic = = --------- > ran_num_gen
payroll.cobol = ==----—-- > payroll
square_root.fortran = --------- > square_root

So, if you execute this command line:
! pl1 simple_sum -map

then you list your working directory, you'll see:
simple_sum

simple_sum.pl!
simple_sum.list

Your 1listing segment, simple_sum.list, can be printed on your terminal
with the print command, or printed on paper with the dprint command. Since
listing segments take up a large amount of space, the sensible thing to do
is to dprint the segment, then delete it:

! dprint -delete simple_sum.list

o) AG90-03



If there are problems with your source code, the compiler will produce
error messages. The compiler can detect errors according to the definitions of
the language involved. These include typing errors, syntax errors, and semantic
errors. These messages are printed for you at your terminal. The format and
details of error messages vary from compiler to compiler. The following is a
sample PL/I error message:

ERROR 158, SEVERITY 2 ONLINE 30
A constant immediately follows the identifier "zilch"
SOURCE: a = zilech 4;

If your compile is taking a long time, you can issue a QUIT signal and take
a look at your ready message. Since a ready message contains the amount of CPU
time used since the 1last ready message, if the CPU times on your last two
messages are different, you know your compilation is working. To resume it,
type start. You can also use the progress (pg) command to get information on
how a command's execution is going. To check on your compile of simple sum.plfi
with the -map control argument, you would type: -

! progress pll simple sum -map
The system would periodically type information about the pl1 command's progress
in terms of CPU time, real time, and page faults. (A page fault occurs when a

page of a referenced segment is not in memory.) See the MPM Commands for a
detailed explanation.

Object Segments

As you may remember from the discussion of dynamic linking in Section 1, an
object segment is an executable module. This is quite different from other
systems, where the object module which is the output of the compiler cannot be
executed until it has been through some kind of linkage editing to become a load
module. On Multiecs, there is no such distinction between an object module and a
load module. Thus, there is no need for you to determine in advance the absolute
addresses of programs in memory, or give instructions for linking and calling
programs or loading them. All compiled programs are ready to run.

Most higher level languages supported by Multics compile into Multiecs standard
object segments. These are divided into several sections. The first section is
called the text section and contains the binary machine instructions that were
translated from the source code and are executed by the processor. The next
section is the definition section, which defines the names and locations of
entry points present in the segment, and the names of external entry points used
by the segment. An entry point is a symbolic offset within a segment. (See "A
Naming Convention" in Section 3.) After the definition section comes the linkage
section, which serves as a template of all virtual addresses for all external
entry points used by the program. It contains per-process information used by
the dynamic linker to resolve these external references. The next section is
the static section, which contains data items to be allocated on a per-process
basis. (This section may be included in the linkage section, and not exist as a
separate section.) Then there is the symbol section, which contains information
on all the variables declared in the program. The symbol section is always
present in the object segment. If -table is specified when the program is
compiled, then a symbol table is included in this section. Some compilers (e.g.,
pl1) support the -brief table control argument, which produces a shorter symbol
section. Finally there is the object map, which contains the lengths and offsets
for each section of the object segment. Details about the format of object
segments and what each section contains may be found in the MPM Subsystem Writers'
Guide.

2-5 AG90-03



Where the standards for the source language permit, all object segments
produced by Multics are:

L pure: the object segment contains no code that modifies itself during
execution. Information about calls outside the segment is copied into
a special segment, and all modifications are made to the copy. The
same segment can be executed by more than one user. No copies of
object segments are made on a per-user basis; there is one shared
segment in the address space of all who use 1it. For example, even
when multiple users are simultaneously compiling COBOL programs, only
one copy of the COBOL compiler is in use.

L recursive: the object segment can call itself.

L ] in standard format: the calling protocols for object segments are the
same irrespective of the higher-level language of origin. This means
that a program in one language can call a program in another language.
Programs can also access any data or file which can be described by
data types supported by the particular language.

EXECUTING PROGRAMS

Now that you have an object segment, you are ready to try executing your
program. To do this, all you have to do is type the name of your program from
command level. The entryname is understood as a command--the system is instructed
to find your program and execute it, just as when you type the name of a command
(like 1list), the system is instructed to find the program by that name and
execute it. Source and object segments are both permanent (they don't have to
be copied to a special directory to be saved), so your program can be run over
and over until you choose to delete it.

Some Results of Execution

L The program runs to normal termination and you get a ready message,
indicating that execution was successful.

r 10:29 3.0 350
® The program pauses for input from your terminal.

& The program halts because of a breakpoint you've put in it for debugging
purposes.

L The program runs to normal termination, but the output you get is
wrong.
® The program halts because you issue a QUIT signal, and the system

responds with a ready message indicating a new command level:

! QUIT
r 10:40 0.1 497 level 2

e The program halts because of an execution error. Examples of such
errors are overflows, underflows, data conversions, and undefined
references. The system prints an error message, then gives you a
ready message indicating a new command level:

Error: Exponent overflow by >udd>ProjA>MacSissle>bad pgm} 143
(line 33) -

System handler for condition returns to command level

r 10:38 0.185 98 level 2

2-6 AG90-03



The new command level means that you are again in a position to invoke
commands. There are some special commands that can be put to appropriate use
here, such as the release, start, program_interrupt, or probe comrands. The
release command returns you to the original command level--the work you were
doing at the time of the interrupt is simply discarded. The start command
resumes execution where it left off. The program_interrupt command returns execution
to a predetermined point from which to resume execution. For the use of the
probe command see Section 5, "Debugging Tools."

Multies will provide you with as specific an error message as possible.
One common error that happens to almost everyone at some time or other is the
following:

Error: record_quota_overflow condition by <program_name>

This message means that you have run out of storage space in the system. The
best way to fix this situation is to delete unneeded segments and type start.
(For descriptions of other common error messages, see Multics Error Messages:
Primer and Reference Manual, Order No. CH26.)

REVISING AND DOCUMENTING PROGRAMS

If you edit your program and recompile it, you may want to save the old
object segment instead of replacing it with the new one. In the process of
developing and testing new versions of a program, you may in fact end up with
several versions, all of which you want to keep. Here are some ways you can do
it:

[ ) You can move the old object to another directory, using the move command:
! move simple_sum obsolete_pll_obj>simple_sum

® You can copy the faulty source (should you wish to save it as well)
and give a new name to the edited version using the copy and rename
commands:

! copy simple_sum.pll obsolete_pli_source>simple_sum.plt
! rename simple_sum.pll new_simple sum.pl1

[ ] You can change the name of the old object:
! rename simple_sum old_simple_sum

You need to be aware of certain dangers involved in renaming segments which are
already known to your process. Renaming a segment doesn't change the association
between the segment name and the segment number. So, if pgma calls pgmb, then
you rename pgmb as badb, create a new pgmb, and run pgma again, when pgma calls
pgmb, it will end up with the old badb instead of the new pgmb. For more
information on the association between segment names and segment numbers, see "A
Note on Initiated Segments" in Section 3.

If you ever get confused as to whien version of your source program is
which, you can use the compare_ascii (cpa) command, which compares ASCII segments
and prints any differences.

Remember that final versions of your programs should be correctly formatted
to improve their readability. There are several Multics commands which can help
you do this. For example, the indent (ind) command indents free-form PL/I source
code according to a set of standard conventions. For another example, the
format_cobol_source (fcs) command converts free-form COBOL source programs to a
fixed format. These commands also detect and report certain types of syntax
errors, and can be used for pre-compile examinations.

2-7 AG90-03



Your final versions should also be well-documented. There are two kinds of
documentation for programs. One is internal, and consists of a step-by-step
description of what the program does. This sort of documentation is best created
by the generous use of comments throughout your code. The other kind of documentation
is external, and consists of a more general description of the programs purpose,
design, and use. Writing info segments is an excellent way of creating this
sort of documentation. (Remember that the information in an info segment is
printed using the help command).

Finally, all of your source and object segments should have the proper
access set, so only the appropriate people can use them.

SAMPLE TERMINAL SESSIONS

Figure 2-1 displays the interaction ‘between Multics and the user Karen
MacSissle as she logs in and writes, compiles, and executes the simple_sum program.
MacSissle uses the Qedx editor to put the program online, the plt command to
compile it, and the program name (without the language suffix) to execute it.
Note that lMacSissle does not have the usual ready message. She sets her message
to "Karen is here" by using the general ready (gr) command in her start_up.ec,
the special exec_com that runs each time she logs in. (See the MPM Commands for
information on the use of general ready.)

In Figure 2-2, user Tom Smith is shown writing a program called times_2,
which accepts an integer and prints the value of 2 times that integer. Smith
takes advantage of the terminal for both input to and output from his program.

A Note on Examples

Because Multiecs is written mainly in PL/I, you may find that its runtime
environment is somewhat oriented towards the convenience of PL/I programmers.
Ways to take advantape of this orientation are presented in Appendix &, "Using
Multics to Best Advantage". However, as mentioned in the preface, this manual
is intended to be useful for all programmers. Although the majority of the
examples are given in PL/I, there is no need to be discouraged if you aren't
familiar with this language. Most of the examples are extremely simple. To see
how you could write the same program in either PL/I, FORTRAN, or COBOL, see
Section #, "Using the Terminal for I/0O".

ARCHIVING SEGMENTS

Segments in Multics are assigned space in increments of pages (4096 characters).
This can be very wasteful if you have many short files stored in the system.
The archive (ac) command allows you to combine several segments into a single
segment called an archive. Once in an archive, the individual segments are
called components of the archive segment. Packing segments together in this way
can produce significant savings in storage allocation and cost.

By invoking the archive command with different arguments, you can manipulate
the archive segment in a variety of ways. For example, in addition to creating
your archive, you can also get a table of contents that names each component in
the archive, extract one or more components from the archive, update and replace
one or more components, and delete individual components.

2.8 AG90-03



ST AT S te S CoE Vo8 w S S8 Lw Pe e Ik tow e et fee b Smw =8 ot s st =% cem e smm sew tie orm o

login MacSissle
Password:

MacSissle ProjA logged in 03/18/81 0G621.4 mst Wed from VIP7201
terminal "none".

Last login 03/18/81 0726.2 mst Wed from VIP7801 terminal "none".
Karen is here

gedx
a
simple_sum: proc options (main);

/¥ this program computes the sum of three numbers set in the program,
then prints the answer at the terminal ¥/

declare
sysprint file, /¥ the terminal output ¥/

first_no fixed binary (17), /¥ the first number ¥/
second_no fixed binary (17), /* the second number ¥/
third_no fixed binary (17), /¥ the third number ¥/
the sum fixed binary (17); /¥ the answer ¥/
/¥ set the three numbers ¥/
first_no = 123;
second _nc = 456;
third_no = 789;
/* add them up ¥/
the_sum = first_no + second_no + third no;
/¥ print the answer ¥/

put skip list ("The sum of the three numbers is:", the_sum);

put skip;
end simple_sum;
\f
w simple_sum.pl1
q

Karen is here

pl1 simple_sum
PL/I
Karen is here

simple_sum
The sum of the three numbers is: 1368
Karen is here

2-9 AG90-03




e i rem s rms e cep e 8 Gew S tew ew cew sew

login TSmith
Password:

TSmith Projh logged in 06/07/79 0927.5 mst Tue from ASCII
terminal "23L4".

Last login 06/06/79 1359.8 mst Mon from ASCII terminal no34n,

A new PL/I compiler was installed; type: help pli_new
Rates for CPU usage have changed; type: help prices
r 9:27 1.314 30

gedx

times 2: proc;

declare (num,product) fixed bin(17);

declare (sysin input, sysprint output) file;
put list ("Enter integer");

put skip;

get list (num);

product = num¥2;

put skip list ("2 times your integer is:", product);
put skips

close file (sysin), file (sysprint);

end;

\f

w times_2.pl1

q
r G:40 4.875 62

pl1 times_2
PL/I
r 9:41 2.906 272

times_2
Enter integer
16

2 times your integer is: 38
r 9:43 0.231 50

Figure 2-2. Sample Terminal Session #2

AG90-03



For more information about the archive command and its use, refer to the MPM
Cormands.

BINDING SEGMENTS

The Multies bind (bd) command is used to merge several separately compiled
object segments into a single executable object segment called a bound segment.
The binder is primarily an cptimizer, which saves search time and link snapping.
It resolves as many external references as it can in order to avoid the necessity
cf resolving them at run time. These references are resolved withcut recourse
to the search rules--the binder looks only in the programs that are being bound,
and rejects any programs in which there are ambiguous external references.

Binding offers the advantages of taking up less storage for the object
code, decreasing execution time, and avoiding many linkage faults that would
otherwise cccur if the bound programs referenced each other from separate segments.
Those programs that you e2ll freguently and that are interrelated (ie, reference
one another) should be bound to improve pregram efficiency. The segments must
be archived before they are bound.

For more information about the bind command, refer to the "MPM Commands.
Also, the MPM Subsystem Writers' Guide provides information on the structure of
bound segments.

LINKS

The word "link" is used for two separate things in Multies: an intersegment
link and a storage system link. This can be confusing for beginners, but once
you know the system, things are usually clear from their context.

An intersegment link is an interprocedure reference, resolved by the linker.
This kind of link is described in Section 3, "Dynamiec Linking".

A storage system link is essentially a "pointer" to a "target". This kind
of link is described here. A storage system link is catalogued in a directory
like a segment, but just gives the pathname of some other place in the directory
hierarchy. The target of such a link is usually a segment, but it can also be a
directory, or even another link. A storage system link enables you to access a
segment located in some other portion of the directory hierarchy without actually
making a copy of it, just as if it were catalogued in your own working directory.
This is one of the ways in which Multics facilitates sharing.

Multics allows you to create a link anywhere in the storage system as long
as you have the proper access to the directory in which the 1link 1is to be
placed. You invoke the 1link (1k) command to create a link and the unlink (ul)
command to delete a link. <(Refer to the MPM Commands.) To see a 1list of the

-link control argument.

2-11 AG90-03






SECTICN 3

DYNAMIC LINKING

As the discussion of dynamic linking in Section 1 indicated, external references
on Multics are resclved when a program is executed. VWhen the system comes
across an unresolved reference, it uses what are known as search rules to find
the necessary segment and establish the link. The purpose of this section is to
explain how the search rules operate, then td show you some of the uses of
dynamic linking.

A NAMING CONVENTION

Due to a P1/I extension which is local to Multiecs, the "$" character is
understood when it appears as part of an external name. a$b is interpreted to
mean segment a, entry point b. (Remember that an entry point is a symbolic
offset within the segment. Refer to the discussion of two-dimensional addressing
in Section 1.) Thus, hes_$initiate, which will be discussed later in this section,
is interpreted to mean segment hes_, entry point initiate.

SEARCE RULES

Let's suppose that you are writing a new version of the Qedx Text Editor,
and have a segment in your working directory named "gedx". If you type "qedx"
on your terminal, you are instructing Multics to find the precgram named gedx and
execute it. But which gedx do you want--yours or the system's? To make the
situation a little bit more complicated, let's suppose that one of your coworkers
is also writing a new version of Qedx, and has a segment in one of his directories
named "gedx", to which you have access. You might want to run his program
sometimes instead of yours or the system's.

In each case, it's up to Multies to figure out which segment you want. The
way Multics does this is by searching. To understand why Multics searches the
way it does, you first need to know some of the assumptions it works under.

Once you have invoked some program or accessed some data base, Multics
assumes there is a good chance you will do so again. If the item is in your
address space, that cuts down on the system overhead regquired to make a complete
search for it a second or third time. So Multics keeps track of all the work
you do after you login. It records your movement through the file system,
noting each item it has located for you and putting these items in your address
space. Multics also assumes that any time you use a reference name which you
have already used, you mean the same item you meant the first time. (A reference
name is a name used to identify a segment that has been made known by the user.)
The name of the item and the information the system needs to find it are recorded
in a table called the reference name table. Segments in this table are referred
to as initiated segments.

3-1 AG90-03



The search rules are a list of directories which are searched in order

until the desired segment is found. The standard search rules are:

1.

You

initiated_segments

Reference names for segments that have already been made known to a specific
process are maintained by the system. A reference name is associated with
a segment in one of four ways:

a. use in a dynamically linked external program reference.
b. use in an invocation of the initiate command.

c. a call to hes_$initiate, hes_$initiate_ccunt, or hes_$make_seg with a
nonnull character string supolled as the ref name argument. These
hes_ entry points are described in the MPM Subroutines.

d. a call to hes_$make ptr or hes_$make_entry (described in the MPM
Subroutines).

referencing_dir

The referencing directory contains the segment whose call or reference initiated
the search. So, if pgma calls pgmb, and pgmb isn't in the reference nane
table, the system looks for pgmb in the directory where pgma resides.

vorking_dir

The working directory is the one associated with you at the time of the
search. This may be any directory established as the working directory by
either the change_wdir command or the change_wdir_ subroutine (described in
the MPM Commands and MPM Subroutines respectlvely) The initial working
directory is your home directory.

system libraries
The system libraries are searched in the following order:

>system_library_standard
This library contains standard system service modules, i.e., most system
commands and subroutines.

>system_library unbundled
This library contains Multics Separately Priced Software.

>system_library_1
This 1library contains a small set of subroutines that are reloaded
each time the system is reinitialized.

>system_library_tools
This 1library contains software primarily of interest to system
programmers.

>system_library auth_maintained

This 1library contains user maintained and installation maintained
programs.

can see what your process's current search rules are by using the

print_search_rules (psr) command:

3-2 AG90-03



! psr
initiated_segments
referencing_dir
working dir
>system_library_standard
>system_library_unbundled
>system_library 1
>system_library tools
>system_library auth_maint

Ncte that, according to these search rules, if you have in your working
directory a program with the same name as a system command or subroutine, your
program will be used rather than the system's. Don't give your programs the
same names as those of system programs, unless you really are trying to replace
them. Here is an example of the trouble vou can get into when you duplicate the
name of a system program. Suppose you have a program of your own which creates
an output file and you name the file "list." If you run your program, then try
to list your working directory using the list command, you will get a message
like this:

command_processor_: Linkage section not found. 1list

The system thinks you are trying to run your output file, list, as a program!

You can modify your search rules by using the add_search_rules (asr),
delete_search_rules (dsr), and set_search_rules (ssr) commands, described in the
MPM Commands. In addition, your system administrator can modify the default
search rules described above for all users at your site.

Thus, the first time you invoke a program after login, the system begins
its search for the segment by looking in the reference name table. The search
fails there, so it continues through the list of directories in the search rules
until the segment is found or all the directories have been searched. Subsequent
invocations of the same program are much faster, because the system finds the
program right away in the reference name table.

A Note on Initiated Segments

If your program named x references a program named y by means of a call or
function reference, a dynamic link is established between x and y so that all
subsequent references to y by x are accomplished by using the segment number
(the alias for the segment name discussed in Section 1). If you change to a new
working directory, and execute a program named z that calls a program in this
new directory named y, the system will establish a dynamic link to the original
segment y because the reference name y is still associated with the original
segment and segment number. The system maintains this association until the
reference is terminated. See Figure 3-1 for an illustration of initiated segments

3-3 AGg0-03



working_dir_1

Figure 3-1.

zcallsy

Initiated Segments

working_dir_2

AG90-03



Segments can be made known to your process by using the initiate (in)
command. You can list your initiated segments with the list_ref names (1lrn)
command. References can be terminated by using one of the terminate commands,
either terminate (tm), terminate refname (tmr), terminate_segno (tms) or
terminate single refname (tmsr), which allow you to remove segments from the
list of segments known to your process. (The new_proc command also erases all
previous association between segment names and segment numbers, by sweeping out
your entire address space.) For more detailed information on these commands,
see the MPM Commands.

Deleting a segment also terminates it. Recompiling a program unsnaps all
links in the current process which point to the program, since the location of
symbolie entry points may be changed by recompilation. cth of these actions
affect only the process performing the operation. Recompiling or deleting a
segment in one process may cause other processes using the segment to malfunction.

USES OF DYNAMIC LINKING

There are many ways in which dynamic linking can be used, but the following
three are probably the most significant:

[ to permit initial debugging of collections of programs before the entire
collection is completely coded.

[ ] to permit a program to include a conditional call to an elaborate
error hardling or other special-case handling program, without invoking
a search for or mapping of that program unless the condition arises in
which it is actually needed.

e to permit a group of programmers to work on a collection of related
programs, such that each one obtains the latest copy of each subroutine
as soon as it becomes available.

The use of dynamic linking in program development is shown by the following
seript. When the script starts, the program "k" and subprogram "y" have already
been written and compiled by our user MacSissle.

k: procedure;

declare (x, y, z) entry;
declare i fixed binary;
declare (sysprint, sysin) files

put list ("Which option?");
get list (i);
if i = 1 then call x;
else if i = 2 then call y;
else if 1 = 3 then call z;
else put list ("Bad option ");
return:

end k;

y: procedure;
declare sysprint file;
put list ("y has been called.");
put skip;
end y3

In this example and all others like it in this manual, comments on the
script are distributed throughout the script itself.

3-5 ’ £G90-03



'k
Which option? ! 2
y has been called.

r 17:11 0.123 11

The program "k" is invoked by typing its name. MacSissle calls for option
2, and the program "y" is called. "k" runs successfully even though two of the
three subroutines it could call do not exist, because the subroutine it does
call is available. Since linking is done on demand, and no demand for "x" or
"z" occurs, their nonexistence does not keep the program from running.

In the next use of "k", MacSissle asks for an option corresponding to the
program "z," which doesn't exist.

'k
Which option? ! 3
Error: Linkage error by >udd>ProjA>MacSissledk!152 (line 11)
referencing ziz
Segment not found.
r 17:11 0.283 00 level 2

The attempt to call the nonexistent subroutine "z" fails. The linkage
error handler invokes a second command level, as indicated by the field "Level
2" in the ready message. The error message shows the full pathname of the
program attempting to locate "z," and gives the name of the program that could
not be found. The notation "z!z" means entry point "z" in segment "z." It is
necessary to separate entry point name from segment name, since a PL/I program
in a segment could have several entry points with different names.

Execution of "k" is suspended, since it cannot continue with the call.
MacSissle has the choice of giving up, or creating "z." She invokes the qedx
editor and creates the segment.

gedx

a

z: procedure;
declare sysprint file;
put list ("This is Z")
put skip;

end z;
\f
w z.pl1

A

q
r 17:12 0.382 48 level 2

Now the segment must be compiled to create a callable object segment.

! pl1 z -table
PL/I
r 17:12 0.234 65 level 2

With the object segment "z" created, the call from "k" can be restarted.
MacSissle does this with the start command.

3-6 AG90-03



! start
This is Z
r 17:12 0.166 27

The program finishes successfully. It can now be run with option 3 without
any additional intervention.

K
Which option? ! 3
This is Z

r 17:13 0.075 18

For more information on the details of dynamic linking, see the MPM Reference
Guide sections on object segments, system libraries and search rules. You might
alsc want to learn about the resolve_linkage_error (rle) command, which can be
used to satisfy the linkage fault after your process encounters a linkage error.
This command is described in the MPM Commands.

SEARCH PATHS

- Searching is something that Multics has to do all the time. So far we've
only talked about searching for object segments--what Multies has to do when you
type the name of a program you want to execute, or your program references an
external procedure. Multies has to search for other things, too, notably input
of some kind. For example, the help command requires as input an info segment.
You can tell the system to look in specific places for the input by creating
search paths. Search paths have the same basic function as search rules, but
are used for things like subsystems and language compilers. A set of commands
similar to those available for modifying search rules are available for modifying
search paths. These commands are add_search_paths (asp), delete_search_paths
(dsp), print_search_paths (psp), set search paths (ssp), and where search paths
(wsp). All are documented in the MPM Commands. -

3-7 AG90-03






SECTICN &

INPUT/CUTPUT PROCESSING

Input/output (I/C) processing on Multics can be handled in many different
ways. The intent of this section is to show you how to do simple kinds of I/O
on Multics, and to introduce you to the basics of doing more complex I/C.

The Multics I/0 system handles logical rather than hardware I/0. This
means that I/0 on Multics is essentially device independent. In other words,
you don't have to write your program with a specific device in mind. Most I/0
operations refer only to logical properties (e.g., the next record, the number
of characters in a line) rather than to particular device characteristies or
file formats. To understand how I/0 processing on Multics works, you must first
be familiar with two important terms.

(1) I/0 switch: a software construct through which the file name in your program
is associated with an actual device. The I/0 switech is like a channel, in
that it controls the flow of data between your program and a device. It
keeps track of the association between itself and the device and the I/O
module.

(2) I/0C module: a system or user-written program that controls a physical device
and acts as an intermediary between it and your program. The I/0 module
knows what the attributes of the device are, and "hides" them from you so
you don't have to worry about them. It processes the I/0 requests that are
directed to the switch attached to it. The Multics system offers the following
I/0 modules:

discard_
provides a "sink" for unwanted output.

rdisk
supports I/0 directly from/to removable disk packs. (These are packs
which are allocated in their entirety to a process; they do not contain
files in the Multiecs storage system.)

record_stream_
provides a means of doing record I/0 on a stream file or vice-versa.

syn
establishes one switch as a synonym of another.

tape_ansi

supports I/0 from/to magnetic tapes according to standards proposed by
the American National Standards Institute (ANSI).

4.1 AG90-03



tape_ibm_
supports I/

O

from/toc magnetic tapes according to IEM standards.

tape_mult_
supports I/0 from/to magnetic tapes in Multics standard tape format.

tape_nstd_
supports I/0 from/to magnetic tapes in nonstandard or unknown format.

tty_
supports I/0 from/to terminals.

vfile

supports I/0 from/to files in the storage system.

Figure 4-1 illustra

tes t
module, and a device.

THE FIVE BASIC STEPS OF INPUT/OUTPUT

For every input/output data stream you are using, you must follow the 5
basic steps of Multies I/0 processing, which involve attaching an I/0 switch to
an I/0 module, opening the switch, performing the data transfer, closing the
switch, and detaching it from the I1/0 module. These steps may be accomplished
outside of your program by means of commands input before and after your program
runs, or inside your program by means of subroutine calls or language I/0 statements.
(Defaults are arranged so you can often appear to skip these steps, and they
will be done correctly anyway.)

(1) Attach the Switch
This step associates your data with a file in your program. The switch is
the program's name for each data stream. (In FORTRAMN, switches are called
fileC5, filel1C, etc.) An attachment statement in Multics is comparable to
a JCL data definition (DD) statement in IBM systems. A switch remains
attached until you detach it or you issue a new_proc or logout command.

A switch may be attached by:

L ] invoking the io_call command

® issuing a call to the iox_ subroutine

® using a2 language open statement (if the switch hasn't been previously
attached)
® using the default attachments associated with PL/I gets and puts,

FORTRAN reads and writes, or COBOL reads and writes

-2 AG90-03



PROGRAM

A
4

1/0 SWITCH

STORAGE
O O FILE

TAPE

Figure 4-1, Flow of Data

4.3 AG90-03



(2)

Cpen the Switch

This step describes the data you're going to use. It tells the system how
the data is organized (its file type) and how it is to be accessed (its
mode) . Data sets can be organized in four fundamental ways: stream,
sequential, blocked, and keyed. Only the first two ways will be discussed
here.

A stream file is a collection of data that is like free-form text. The
data is a continuous flow of information, with individual items separated
by blanks, commas, or newline characters. A stream file can be created,
examined, and updated via a text editor, and can be meaningfully printed on
a terminal or 1line printer, because it contains only ASCII characters.
It's size is arbitrary.

A sequential file is a collection of data that is broken into discrete
units calied records, which have a fixed form. A seguential file is created
bty a program, and is used for information which is meant to be read and
processed by another program. The data are in the same coded form as data
stored internally in the computer and can't be printed meaningfully.

Most tape files are sequential. Disk files may be either stream or sequential.
Terminal I/0 is stream-oriented.

Data sets can be operated on in three fundamental ways: input only, output
only, or both input and output. Some of the opening modes of a switch are
therefore: '

si -~ stream input sqi - sequential input
so - stream output sqo - sequential output
sio - stream input/output sqio - sequential input/output

A switch may be opened by:

® invoking the io_call command

e issuing a call to the iox_ subroutine
® using a language open statement

[ ) using PL/I gets, puts, reads, and writes, FORTRAN reads and writes, or
COBOL reads and writes--the switch is opened by default

(3) Perform I/C Operations

This step is where the data transfer actually occurs.

Data transfer may be performed by:

[ ] invoking the io_call command
® issuing a call to the iox_ subroutine

L) using language defined I/0 statements (gets, puts, reads, writes, etc.)

(4) Close the Switch

This step tells the system you are through (at least temporarily) with the
I/0 switch. It prevents further access to the data through that switch,
enables you to re-open the switch later with a different mode, and with
output disk files and tapes, sets the length of the file.

-y AG90-03



A switch may be closed by:

& invoking the io_call command

® issuing a call to the iox_ subroutine

L using a language close statement

L default (on your program's return), if and only if the switch
was opened by default

(5) Detach the Switch
This step disconnects your program from your data.

A switch may be detached by:

- invoking the io_call command
® issuing a call to the iox_ subroutine
- using a language close statement

& default (on your program's return), if and only if the switch
was attached by default

USING THE TERMINAL FOR I/0

The simplest way to do I/0 on Multics is to use the terminal. There are
four standard switches which are attached when your process is created.

(1) user_i/o: this switch acts as a common collecting point for all terminal
I/0.7 It's attached to your terminal through the I/0 module tty and opened
for stream input and output.

(2) wuser_input: this switch controls command and data input at the terminal.
Tt's attached to user i/o through the I/0 module syn_, and through that to
your terminal. It's opened for stream input.

(3) user _output: this switch controls command and data output at the terminal.
It's attached to user_i/o through the I/0 module syn_, and through that to
your terminal. It's opened for stream output.

(4) error _output: this switch controls output of error messages at the terminal.

Tt's attached to user_i/o through the I/0 module syn_, and through that to
your terminal. TIt's opened for stream output.

Figure 4-2 illustrates these standard attachments.

4-5 AG90-03



user _input

PROCESS

A

error_.output

user_output

user_i/o

Figure 4-2.

Standard Attachments

AG90-03



If you don't specify switch names and I/0 modules when you run your program,
the system uses these defaults. So, it's pcssible to write your program using
the terminal for input and output and not worry about files. For example, here
is a revised version of our sample program from Section 2, simple sum. It has
teen renamed any_sum, and changed to accept input typed by the user at the
termiral in response to a prompting message. The output is typed back on the
terminal. Notice the use of sysin and sysprint for the terminal input and
output.

any_sum: proc options (main);

/¥ this program computes the sum of any three 1 to 6 digit numbers typed
at the terminal, then prints the answer at the terminal */

declare
sysin file, /¥ the terminal input ¥/
sysprint file, /¥ the terminal output ¥/
first_no fixed binary (20), /¥ the first number ¥/
second no fixed binary (20), /¥ the second number ¥/
third_no fixed binary (20), /* the third number */
the_sum fixed binary (24); /¥ the answer ¥/

/* get the three numbers ¥/

put skip list ("please type three 1 to 6 digit numbers:");
get list (first_no, second_no, third no);

/¥ add them up ¥/
the_sum = first_no + second_no + third noj;
/¥ print the answer ¥/

put skip list ("the sum of the three numbers is:", the_sum);
put skip;

end any_sum;

Here are FORTRAN and COBOL versions of the same program.

c This program computes the sum of any three numbers typed at the

c terminal, then prints the answer at the terminal.
integer first_no, second_no, third_no ! the 3 numbers
integer the_sum ! the answer

c Get the three numbers

print, "please type three numbers:"
input, first_no, second_no, third_no

c Add them up
the_sum = first_no + second_no + third no
c Print the answer
print, "the sum of the three numbers is:", the_sum

stop
end

47 AG90-03



Detailed information about how the command utility and active function error
subroutines can be used from an active function procedure is provided in the MPM
Subroutines and the MPM Subsystem Writers' Guide respectively.

The same procedure can be programmed to operate both as an active function
and as a command procedure. Typically when such procedures are called as a
command, they print on the user's terminal the value of the string they would
return as an active function. These command/active function procedures are coded
as active functions and should call cu_$af return arg instead of cu $af arg count.
If cu_$af return arg returns the error code error_table_$not_act_frc, they operate
as commands. If the code returned is zero, they use the returned pointer and
length to base the return value. Any other nonzero error code should be fatal.
Note that cu_$af return arg always returns a correct argument count even if the
active function was invoked as a command, so the user can go on to use cu_$arg ptr
with no further checking.

ADDRESS SPACE MANAGEMENT

When a user logs in, he or she is assigned a newly created process. Associated
with the process 1is a collection of segments that can be referenced directly by
system hardware. This collection of segments, called the address space, expands
and contracts during process execution, depending on which segments are used by
the running programs.

Address space management consists of construeting and maintaining a
correspondence between segments and segment numbers, segment numbers being the
means by which the system hardware references segments. Segment numbers are
assigned on a per-process basis (i.e., for the life of the process), by supplying
the pathname of the segment to the supervisor. This assignment is referred to
as "making a segment known." Segments are made known automatically by the dynamic
linker when a program makes an external reference; making a segment known can
also be accomplished by explicit calls to address management subroutines. 1In
addition, when a segment is made known, a correspondence can be established
between the segment and one or more reference names (used by the dynamic linker
to resolve external references); this is referred to as "initiating a reference
name." When dynamic linking is the means used to make a segment known, the
initiation of at least one reference name is performed automatically. (For more
information on reference names, see "Reference Names" in Section 3 and "Making a
Segment Known" below.) A general overview of dynamic linking is given below.

Dynamic Linking

The primary responsibility of the dynamic linker is to transform a symbolic
reference to a procedure or data into an actual address in some procedure or
data segment. In general, this transformation involves the searching of selected
directories in the Multics storage system and the use of other system resources
to make the appropriate segment known. The search for a referenced segment is
undertaken after program execution has begun and is generally required only the

3 1 £ mAanom Fl~a ~ A -
first time a program references the address.

The dynamic linker is activated by traps originally set by the translator in
the linkage section of the object segment. These traps are used by instructions
making external references. When such an instruction is encountered during
execution, a fault (trap) occurs and the dynamic linker is invoked.

9/81 4-7.1 AG91C




The dynamic linker uses information contained in the object segment's
definition and linkage sections to find the symbolic reference name. (For a
detailed description of these sections, see "Multics Standard Object 3egment” in
Section 1 in the MPM Subsystem Writers' Guide.) Using the search rules
currently in effect, the dynamic linker determines the pathname of the segment
being referenced and makes that segment known. The linkage trap is modified so
that the fault does not occur on subsequent references; this is referred to as
snapping the link.

8/80 §-7.2 AG91B



€1
C1
01
01

identification division.
program-id. anysum.

author. KMacSissle.
date-written. February 1981.
date-compiled.

environment division.
configuration section.
source-computer. Multics.
otject-computer. Multics.

data division.
working-storage section.

procedure division.

100-get-three-numbers.

200-add-them-up.

300-print-the-answer.

remarks. This program computes the sum of any three 1 to 6 digit
numbers typed at the terminal, then prints the answer at the
terminal.

first-no piec 9(6) value zeroes.
second-no pic 9(6) value zeroes.
third-no pic 9(6) value zeroes.
the-sum pic 9(7) value zeroes.

display "please type three 1 to 6 digit numbers".
display "(numbers less than 6 digits long must be zero-filled,".
display " and each number must be typed on a new line):™.

accept first-no.

accept second-no.
accept third-no.

compute the-sum = first-no + second-no + third-no.

display "the sum of the three numbers is: ", the-sun.
stop run.

USING SEGMENTS AS STORAGE FILES

When your application requires the use of a storage file for I/0, the

easiest thing to do is to use a segment in your working directory (or a segment
in another directory to which you have created a link). In your program, you

must

(M
(2)

(3)

(5

do the following:

Give the file a name and declare it as a file;

Open it (connect it to your program, prepare it for processing, and position
it at the bteginning);

Do data transfer via one or more get, put, read or write statements (depending
on the language you're using);

Close it (disconnect it from your program).

4-8 AG90-03



Here is a revised version of the any_sum program. It'sbeen renamed compute sum,
and changed so that it gets its inpuf from a segment in your working directory
called in_file. The output goes to another segment in your working directory
called out_file.

compute_sum: proc options (main);

/¥ this program computes the sum of three 1 to 6 digit numbers read from
an input file, then writes the answer to an output file ¥/

declare
in_file stream file, /¥ the input file ¥/
out_file stream file, /¥ the output file ¥/
first_no fixed binary (20), /¥ the first number ¥/
second_no fixed binary (20), /¥ the second number ¥/
third_no fixed binary (20), /¥ the third number %/
the_sum fixed binary (24); /¥ the answer ¥/

/% open the files ¥/

open file (in_file) input,
file (out_file) output;

/¥ get the three numbers from the input file ¥/

get file (in_file) list (first_no, second_no, third_no);
/¥ add them up ¥/

the_sum = first no + second_no + third _no;
/¥ put the answer in the output file ¥/

put file (out_file) list (the_sum);

/¥ close the files ¥/

close file (in_file),
file (out_file);

end compute_sum;

Doing I/O this way also takes advantage of the default switches and modules.
The open statement attaches and opens the switch, the close statement closes and
detaches the switch.

What if the files you need to use are not segments in your wofking directory?
One thing you can do, if you're a PL/I programmer, is to use the title option on
your open statement. For example:

open file (in_file) title
("vfile_ >udd>ProjA>MacSissle>data_files>test_file_1") input;

where

vfile >udd>ProjA>MacSissle>data_fi1es>test_file_1
is an example of an attach description. An attach description is a string of
characters which identify the name of an I/0 module and options to control its

operation. In this case, the only option given is the source/target of the
attachment (i.e., the name of the device or file).

4-9 AG90-03



Other languages have constructs which are somewhat similar to the PL/I
title option. In FORTRAN, there is the attach specifier, which is used on an
open statement. In COBCL, there is the catalog-name clause. See the Language
Users' Guides for information on how to use these constructs.

USING I/0 COMMANDS AND SUBROUTINES

The use of I/0 commands and subroutines is where I1/0 processing may become
more complex. The following discussion is_ not intended to fully explain their
use, but rather, to introduce the basic concepts involved. For more information,
refer to the MPM Reference Guide, Section 5. Information is alsc available in
the Language Users' Guides.

The command for performing operations on designated I1/0 switches 1is io_call
(io). 1Its syntax is:

io opname switchname {args}

It is used as follows:

(1) To attach a switch:

syntax: io attach switchname modulename {args}
example: io attach my_switeh vfile_ >udd>ProjA>MacSissled>my_file

vf
I

vfil >
eserip

udd>ProjAd>MacSissledmy_file 1is another example of an attach
ption

e
i

o {2
~ (D

Q. -~

(2) To open a switch:

syntax: 1io open switchname mode
example: io open my_switch sequential_input

(3) To close a switch:

syntax: 1io close switchname example: io close my_switch

(4) To detach a switch:

syntax: io detach switchname example: io detach my_switch

The io_call command is used outside of your program. A typical sequence at
command level would involve attaching and opening the switches, running your
program, then closing and detaching the switches. (Switches that are attached
and opened at command level should usually be closed and detached at command
level. However, they can also be closed explicitly by the program using language
close statements.)

Other I/0-related commands include:

close file (cf)
closes specified FORTRAN and PL/I files. This command is very useful if
your program opens a file, then terminates unexpectedly before closing
it. You must close the file before you run the program again, or you'll
get an end-of-file error.

4-10 AG90-03



copy_cards (ced)
copies specified card image segments from the system pool storage into

your directory. The segments to be copied must have been created using
the Multics card image facility.

copy_file (cpf)
copies records or lines from an input file to an output file.

display_pllio_error (dpe)
describes the most recent file on which a PL/I I/0 error was raised and
displays diagnostic information associated with that error.

file output (fo)
directs all subsequent output over user output to a specified segment.

print_attach_table (pat)
prints information about I/0 switch attachments.

revert_output (ro)
restores all subsequent output to the previous device.

stop_cobol_run (ser)
causes the termination of the current COBOL run unit.

terminal output (to)
directs all subsequent output over user_output to a terminal.

Three of these commands can show you a little about how switches work. Type
"pat"™ on your terminal and the system will print this:

user_i/o tty_ -login_channel
stream input_output

user_input syn_ user_i/o

user_output syn_ user_i/o

error_output syn_ user_i/o

You can see from this that user_i/o is attached via the module tty_to the login
channel, and user_input, user_output, and error output are attached via the module
syn_ to user_i/o.

Type "fo my_file; pat; ro; pr my_file" on your terminal and the system will
print something like this:

my file 03/10/81 1124.0 est Mon
user_i/o tty_ -login_channel
stream_input_output
user_input syn_ user_i/o
user_output syn_ fo !'BBBJKqdcZHXHFf
error output syn_ user_i/o :

fo_save_ !'BBBJKqdcZJXgxW
syn_ user i/o
fo_!BBBJqucZHYHFf vfile_ >udd>ProjA>MacSissle>my file -extend
stream_ output

(Refer to Figure 4-3.) For complete information on all of these commands, see
the MPM Commands.

You can see from this that user_output was attached via vfile instead of syn_.

n-11 AG90-03



The most important subroutine for doing I/0 is iox_. It is called from
within your program just like any other subroutine, and can be used to attach,
open, close and detach switches, as well as toc read and write records, and
perform various other I/0 cperations. Another subroutine for doing I/0 is ioa_,
which is used for producing formatted output; it can be very handy. The use of
these subroutines is beyond the scope of this manual. Detailed information is
available in the MPM Subroutines.

CARD INPUT AND CONVERSION

You may have programs punched on cards that you would like to compile and
run under Multics. The standard way of handling a card deck on Multiecs 1s to
place the deck in a card reader and read it into a system pool. Once this is
done, you log in on a terminal, and transfer the card file from the system pool
to your working directory using the copy_cards command already mentioned.

A minimum of three control cards must accompany your deck. These control
cards identify you to the system, and specify the format of the card input you
are submitting. There are two kinds of card input on Multies. Cne is bulk data
input, which is usually a program or a data file. The format of a card deck for
bulk data input is shown below:

++DATA DECK NAME PERSON ID PRCJECT ID
++PASSYORD PASSWORD - -
++CONTROL OVERWRITE

++AIM ACCESS CLASS OF DATA CARDS
++FORMAT PUNCH_FORMAT MODES

++INPUT

(user data cards)

The three cards required as a minimum are the first, which is an identifier
card, the second, which is a password card, and the last, which signals the end
of control input.

The other kind of card input is remote job entry, which is a series of
Multics commands to be run as an absentee job. For information on absentee
jobs, and the format of a card deck for remote job entry, see Section 7. For a
complete explanation of all the Multics control cards, see Appendix C of the MPM
Reference Guide.

412 AG90-03



PROCESS

user_input

error_output

i

Figure #4-3.

\

user_ifo

Attachments After Execution of file_ output Command

user_output

<>

AG90-03






SECTICN 5

A DEBUGGING TOOL

A variety of debugging tools are available on Multics. They allow you to
look at your program piece by piece, in a way that is closer to the way the
machine sees it. The most powerful of these tools is an interactive program
named probe, which permits source-language breakpoint debugging of PL/I, FORTRAN,
and COBOL programs. To understand the discussion of probe given later in this
section, you must first know a little about the Multics stack.

THE STACK

Each process has associated with it a stack segment (called the stack) that
contains a history of the environment. The stack is essentially a push down
list which contains the return points from a series of outstanding interprocedure
calls. It also holds storage for automatic variables. If you were to stop a
running process and trace its stack, you would find, starting at the oldest
entry in the stack, a record of the procedures used to initialize the process,
followed by the command language processor, followed by the procedure most recently
called at command level and any procedures it has called. Your stack can be
visualized as follows:

The lines in the illustration above define stack frames. As control passes
from program to program within the system, your stack ¥grows” new stack frames:

5.1 AG90-03



Figure 5-1 gives a pictorial view of what the stack might look like at
different times during the execution of a progranm. In Figure 5-1a, the last
frame of the stack is for the command level programs. From command level, you
can type commands at the terminal. Once a command is typed, that program is
called and a stack frame immediately allocated for it. (This is shown in Figure
5-1b). The stack remains in this state for the duration of execution of the
program.

1

Header Header Header
initial initial initial
program program program
first first first
command command command
level level level
a
program program
QUIT
b information
(signal_
overhead)
second
command
level
c

Figure 5-1. State of Stack

(a) State of Stack after Login
(b) State of Stack after Command is invoked
(c¢) State of Stack after QUIT

5-2 AG90-03



Figure 5-1c depicts the stack after a QUIT is signalled. Here a second
command level is established. The first command level, and the program itself,
have been suspended, but nothing has been thrown out.

At this point further commands could be issued. The start command would
cause the program to resume execution, and the stack to revert to the state
illustrated in Figure &-1b. The release command would cause the stack frame
(and hence the execution state) of the program to be discarded, and the stack to
revert to the state depicted in 5-1a.

Note that it would be possible at the second command level (Figure S-1e¢) to
invoke the same program called at the first command level.

Figure 5-2 illustrates several of the states of the stack during execution
of a program consisting of several subprograms. The call/return sequence depicted
is:

Program A calls program B

Program B calls program C

Program C returns to B

Program B calls program D

Program D returns to B

Program B returns to A

Program A returns to command processor

These diagrams illustrate the behavior of four separately compiled programs,
each allocated a new stack frame every time it is called:

5-3 AG90-03



Header

initial
program

Header

initial
program

Header

first
command
level

first
command
level

initial
program

Program A

first
command
level

Program A

Program B

Header

initial
program

Header

first
command
level

initial
program

Header

Program A

first
command
level

initial
program

first
command
level

Program B

Program A

Program C

Program B

Program A

Header

Program B

Program D

initial
program

Header

first
command
level

initial
program

Header

Program A

first
command
level

initial
program

Program B

Program A

first
command
level

Figure 5-2.

Allocation of Stack Frames

5-4

AG90-03



(a) User at command level.

(b) A is invoked and gets stack frame, in which automatic variables are
allocated and initialized.

(¢) A& calls B. B gets stack frame, in which automatic variables are allocated
and initialized.

(d) B ecalls C, C gets stack frame, in which automatic variables are allocated
and initialized. :

(e) C returns to B, the stack frame for C is discarded, and storage is
released.

(f) B calls D, D gets stack frame, in which automatic variables are allocated
and initialized.

(g) D returns to B, the stack frame for D is discarded, and storage is

released.

{r) B returns to A, the stack frame for B is discarded, and storage is
released.

(i) A returns to command level. All program-specific automatic storage
has been released.

Automatic storage is storage which stays around only for the life of a
program. Static storage is storage which stays around for the life of a process,
or is retained across processes.

If an unexpected error occurs (or you press the QUIT button), the system
will save the current environment, mark the stack at its current level, and push
a frame onto the stack for a new activation of the command processor.

The new activation of the command processor accepts commands just as the
original one did. It is possible to restart the suspended program, or to discard
the saved environment, or to use one of the Multics debugging tools to examine
the saved environment.

The release command causes the command processor to return to its own previous
activation, and discard the intervening stack contents. The programs whose stack
contents have been discarded cannot be resumed or examined after the stack has
been released.

The start command causes the command processor to attempt to continue execution
of the suspended program at the point of interruption. Depending on the nature
of the error, and what has been done since the error occurred, the restart
attempt may or may not succeed. Programs may always be restarted after a QUIT,
but only seldom after an error. If the program cannot be restarted, the error
message will usually be repeated. An unsuccessful attempt to restart a program
is usually harmless.

If you would like to examine the stack history of your process in detail,
try using the trace_stack (ts) command, described in the MPM Commands.

PROBE

The probe (pb) command can be used to examine the saved stack and the
current state of suspended programs. (Remember that a program which makes a
call to another program is suspended just as a program which makes an error is
suspended, except that a program which makes a call can always be resumed.)
Probe can print the values of program variables and arguments, as well as reporting
the last program location to be executed.

The use of probe is shown here in a series of examples, which make use of
the following program, blowup.pll. This program has an illegal reference to the
array "a", and the subscriptrange condition occurs when it 1is run. Since

5-5 AG90-03



subscriptrange checking is disabled by default in PL/I, the error manifests
itself as an out_of_bounds condition instead of a subscriptrange. (In practice,
it is recommended that PL/I programmers' enable such conditions as subscriptrange.)
Although this error is easy to spot, the behavior of the program is typical of
other, harder to spot errors.

! print blowup.pll
blowup.pl1 c4/17/80 1332.0 mst Thu

blowup: procedure;

del J fixed binary;
del a (10) fixed binary;
del sum fixed binary;
a (¥) = 13
do j = -1 to -1000C0 by -1;

sum = a ()3
end;

end blowup;

r 13:32 0.110 20

! pl1 blowup -table
PL/I
r 13:32 C0.675 174

The program is compiled with the -table control argument. This action
causes a symbol table to be created, and stored with the program in the executable
object segment. The information it contains can be used by the Multics debugging
aids. A symbol table should always be created while debugging, so that errors
may be found more easily.

! blowup

Error: out_of_bounds at >udd>ProjA>MacSissled>blowupi24 (line 9)
referencing stack 41777777 (in process dir)

Attempt to access beyond end of segment.

r 13:32 0.228 32 level 2

The program is invoked by typing its name. It takes an 'out_of_ bounds'
fault, because the subscript used in the reference to array "a" is invalid. The
program does not use PL/I subscriptrange checking, so it attempts to calculate
the address of the (nonexistent) element of "a" referenced. The resulting address
does not exist, so the fault occurs.

This message shows the name of the error condition, the pathname of the
program, the octal location in the object segment where the error occurred, the
line number, and an additional message about the error. If blowup was a FORTRAN
program, the pathname would look like this: >udd>ProjA>MacSissle>blowup$main_,
blowup being the name of the segment and main_ the name of the program entry
point. This is because every FORTRAN program has a "main" program entry point
and Multics uses this as part of its name. If the program had not included a
symbol table, the line number would not have been part of the message.

!
! probe
Condition out_of bounds raised at line 9 of blowup (level 7).

5-6 AG90-03



MacSissle invokes the probe command. Probe 1looks- for the program which
caused the trouble, and prints a message about the most recent error found in
MacSissle's process. The word "level" here refers not to command processor
level, but to the number of programs saved on the stack. The error occurred in
hlowup, which was the seventh program on the stack.

0
ot
[t
0
e

read_1list|13400

command processor !10301

abbrev 17507 -

release_stack|7355

unclaimed signali2isi2

wallliiio™

blowup (line 9) out_of bounds
read_list 13400 -
command_processor_} 10301

abbrev 17507

listen_|7355

process overseer 35503
user_init_admin_T40100

— N =0T OV 00 D = N

The stack is displayed by the "stack" request. This request shows every
program on the stack, in the order invoked. There will always be unfamiliar
programs on your stack. You can just ignore them--they are for handling errors,
processing command, etc. The numbers on the left show the order of activation.
The entry for blowup shows the source line number corresponding to the last
location executed, and the name of the error that occurred. The line number can
be determined because blowup was compiled with a symbol table. The other programs
have no symbol table, so the display shows the cctal offset of the last instruction
executed.

!  source
sum = a (]j);

Using the "source" request, the source statement for line 9 is displayed.
This is the line that was being executed when the error occurred. More precisely,
the error occurred executing the object code corresponding to this source line.

! value j
j = -2689

! symbol a
fixed bin (17) automatic dimension (10)
Declared in blowup

The value of the variable "j" is displayed with the "value" request. This
request takes as its argument the name of a variable, and prints the value of
the variable. (Note that a program must be suspended for you to look at its
automatic variables.) Next, the "symbol" request is used, to show the attributes
Of‘ "a."

! position 8

do j = -1 to -100000 by -1;

5-7 AG90-03



The "position" request is used to examine different lines of the program,
in this case the line before the one that caused the hang. This request can
also be used to examine different programs cn the stack. For example, to look
at the abbrev program on level 4, MacSissle could type "position level 4".
However, she would most likely get the answer "probe (position): Cannot get
statement map for this procedure," which means that the program was not compiled
with the -table option. (Most system commands have -~table omitted, to save
space.)

! quit
r 13:33 1.080 129 level 2

The last probe request used is "quit," which exits probe, and returns to
command level. MacSissie is still at command level two, and the program is
still intact. The next command typed is the release command, which discards the
saved frames, returning to level one.

! release
r 13:32 0.057 16

Unlike interactive programs like read_mail, probe doesn't prompt you for
requests. If you're not sure whether probe is listening, type a dot, and probe
will respond with "probe 5.2" (or whatever the version number is) 1if it is
there.

Probe has many more features than there is room to present here. It should
still be useful to you even if you don't use the other features, but to learn
about them you can use the "list_requests" request, which tells you the name of
every probe request, and the "help" request, which tells you about probe requests
and also about probe itself. For example, you can type "help value" to find out
about the "value" reguest, or "help help" to find out about "help".

Another debugging tool which you may find useful is the trace command,
which allows you to monitor all calls to a specified set of external procedures.
Full descriptions of the probe and trace commands are available in the MPM
Commands.

5-8 AG90-03



SECTION 6

A PERFORMANCE MEASUREMENT TOOL

After a program is written and debugged, it is often desirable to increase
its efficiency. Multics provides performance measurement tools which identify
the most expensive and most frequently executed programs in a given collection.
Within these crucial programs, the most costly lines are found by using the
profile facility.

To use the profile facility, the first thing you have to do is compile your
program with the -profile control argument. This control argument causes the
compiler to generate special code for each statement, recording the cost of
execution on a statement-by-statement basis. Then, after executing your program
many times, you can use the profile command to look at its performance statistics.

The example that follows shows the use of profile with a very small sample
program to be used as a subroutine:

prime_: procedure (trial_prime) returns (bit (1) aligned);

declare trial_ prime fixed binary (35) parameter;
declare trial factor fixed binary,

last_factor fixed binary;
declare (mod, sqrt) builting

last_factor = sqrt (trial prime);
do trial_factor = 2 to last_factor;
if mod (trial prime, trial factor) = O
then return (T0"b); -
end;
return ("1"b);
end prime_;

This subroutine cannot be called directly from command level, since only
programs whose arguments are nonvarying character strings may be called directly.
It is to be used with other programs. To test it, a simple command is written
which accepts one argument, converts it to binary, and calls the prime_ subroutine.
The testing command is called test_prime. It is not shown here.

! pl1 prime_ -profile
PL/I
r 17:44 0.699 140

! test_prime 3
3 is a prime.
r 17:44 .110 23

6-1 AG90-03



First, the prime_ subroutine is compiled using the -profile control argument.
Next, the test_prime command is invoked with the argument "3". Test_prire converts
the 3 to binary, and calls the prime_ subroutine with it.

! discard_output "test_prime ([index_set 5001)"
r 17:4% 5.103 54

To evaluate the performance of the subroutine, several hundred calls to it
should be made, over a wide range of values. The next command line invokes
test prime 500 times, with values from 1 to 5C0. The index set active function
returns the numbers from 1 to 500, and the parentheses invoke test_prime once
for each value.

The output from the program is not interesting, so the discard_output (dco)
command is used. This command causes output from the program to be discarded,
instead of printed on the terminal.

! profile prime_
Program: prime_
LINE STMT COUNT COST STARS OPERATORS
6 1000 34000 ¥¥x% fx1_to_fl2, dsqrt, f12_to_fx1
7 1000 3000
7 418 13254 *¥¥
8 4218 59052 X¥¥¥ mod_fx1
] 800 8800 ¥% return
10 3418 6836 *¥
11 200 2600 return
Totals: 15054 127542
r 17:46 0.368 51

While the program was run, performance statistics were saved. Now the
profile command is used to display those statisties. For each line, it displays
the total times executed, an estimate of the cost, and the PL/I operators used.

Note that some statements (those in the loop) were executed more than others.
The COST for a statement is the product of the number of instructions for the
statement and the number of times the statement was executed. This cost does
not take into account the fact that some instructions are faster than others, or
the time spent waiting for missing pages (page faults). The STARS column gives
a rough indication of the relative cost of each statement.

The names of the PL/I operators used are also given. The operator fx1_to_f12
is used to convert the fixed point number to float, so that its root may be
taken. The dsqrt operator takes the square root. Finally, the operator fl2_to_fx1
converts the result back to integer. The PL/I mod builtin is implemented by the
mod fx1 operator. These operators are the most expensive things in the program.
Occasionally a program can be rewritten to not require expensive operators.

6-2 AG90-0C3



! profile prime_ -sort cost -first 5

Program: prime

LINE STMT COUNT COST STARS OPERATORS
8 4218 59052 ¥*x¥x mod fx1
6 1000 34000 ¥x¥¥ f¥1 to f12, dsqrt, fl2 to fx1
7 yu1e 13254 *#%% - - - =
] 800 8800 ¥# return
10 3418 6836 %%
Totals: 15054 127542

r 17:46 0.205 49

When profiling large programs, it is usually desirable to look only at the
most expensive lines, since they are the only ones of interest. The profile
command can be instructed to sort the lines by cost, and display the five most
costly lines in order.

The profile command can also be instructed to produce a source languarge
type of listing with performance statistics adjacent to each source line. Figure
6-1 shows MacSissle using the profile command with the -list control argument to
produce such a listing for the compute_sum progran. Mote that when -1list is
used, the profile command produces a segment with the same name as the program,
but with a suffix of "pfl". (Note also that MacSissle has again set her ready
message to read "Karen is here".)

More detailed records of execution are available if you compile your program
with the -long profile control argument. When this is done, the program samples
the Multics clock before every instruction, so the total time per statement is
available to the profile command. The performance data from a progran compiled
‘with -long profile is displayed with the profile command. For further information,
see the MPM Commands description of profile.

6-3 AG90-03



-

o1l compute_sum =profile
PL/I
Karen is here

compute_sum
Karen is here

! profile compute_sum =list
Karen is here

compute_sum.ofl 05701/ 1176,5 edt Fri

Profile Yistino of >udd>ProjA>MacSissie>compute_sum,.oll
Date: 05/01/81 1124,7 edt Fri
Total counts: 7 Total cost: 197

CQUNT COST STAPS LIKWF SOURCE
1 compute_sum: oroc ootions (main)s
?
2 /% this program computes the sum of three 1 to 6 digit numbers read from an
4 irout file, therm writes the answer to an outout file =x/
[
1 20 xwx 6 declare
7 in_file stream file, /% the fnput file %/
R out_file stream fije, /% the outout file »/
e first_no fixed himary (20), /% the fipst number */
19 second_no fixed binarv (20), /% the second number */
n third_nn fixed hinary (20), /% the third number %/
12 the_sum fixed binapy (24): /% the answer */
13
14 /% oren the fjles */
15
1 35 K% 16 oven fiie (in_file) inout,
17 file (out_file) outout;
12 3
19 /* get the three numbers from the inout file »/
20
i 8G9 kxk* 21 aet file (in_file) list (fiprst_nn, second_nor third_no);
22
2% /* adg them up =/
el
1 4 25 the_sum = first_no + second_no + third_no;
26
27 /% put the answer in the output file *x/
2R
[ 03 krak 27 pyut file (out_file) list (the_sum)}?
30
31 /* close the files x/
32
1 26 x*x 33 close file (in_file},
34 file fout_file):
35
1 10 *+* 34 erd compute_sum?
37

Figure 6-1. Use of profile Command With -1list Control Argument

6-4 AGG0-03



SECTION 7

ABSENTEE FACILITY

A common programming pattern is to develop a program online, using debugging
tools and trying a variety of test cases interactively to check on a program's
correctness. After the program is working, you may wish to do a large "production"
run. Since the production run may produce a large amount of output or take a
long time, you may not wish to wait at your terminal for the results. Production
runs on Multics are best done using absentee jobs, which are somewhat analogous
to batch jobs on other systems.

An absentee job runs in an environment similar to that of an interactive
user. In other words, an absentee job uses Multics in much the same way that a
person does. It logs in to your home directory, and runs your start_up.ec, if
any. This must be kept in mind, both when writing a start_up.ec and when submitting
an absentee job. If you forget that your absentee job will run your start_up.ec,
you may discover that it has stolen your messages or tried to read your mail.
If you assume that your absentee job will log in to the directory from which you
submitted it, you may discover that it has run the wrong version of your program.

A big difference between an absentee job and an interactive user is that an
absentee job is not associated with a terminal. Its input comes from a file,
and its output goes to a file. (In an absentee process, the I/0 switches are
attached to the input and output segments, instead of the terminal.)

An absentee input file, or control file, is a segment with the suffix
"absin™. At its simplest, it is Just a collection of commands to be executed.
The language used in an absentee job is the same as that used in exec_coms. It
is a superset of the command language. You must anticipate any responses or
commands you must give ahead of time, and put all of this data into your control
file.

An absentee job 1is submitted by supplying the name of the absin file to
the enter abs_request (ear) command. The absin file is not copied. It stays
absentee job. You must not, for example, edit a file it is using, or recompile
a program it is running.

The absentee job is placed in a queue and run as "background" to the normal
interactive work of the system. This technique allows the system to utilize its
rescurces most effectively, by keeping a queue of jobs that can always be run,
and delayed for serving interactive users. For these reasons, the charging rate
for absentee jobs is normally substantially lower than for interactive work.

Output from an absentee job goes into a file whose name is the same as the
absin segment, but with the suffix "absout" instead of "absin". When the Jjob
completes, you may print this absout segment. Figure 7-1 illustrates the differences
between interactive usage and absentee usage.

7-1 AG90-03



COMMANDS

- USER'S
TERMINAL

INTERACTIVE
PROCESS

RESPONSES
FILE 1/O
DATA
FILE
_ COMMANDS ABSIN
ABSENTEE FILE
PROCESS
RESPONSES
FILE 1/O
DATA ABSOUT
FILE "] FILE

Figure 7-1. Interactive vs Absentee Usage

7-2 AG90-03



Suppose MacSissle has written a FORTRAN program which figures square roots.
The program resides in her directory of FORTRAN programs, and she would like to
compile and run it absentee. The first thing she does 1s create a segment
called compile run.absin.

cwd >udd>ProjA>MacSissle>fort_progs
fortran square_root.fortran -list
dprint -dl square_root.list

square root

dprint file10

logout

Then she types this command line:
!  enter_abs_request compile_ run

Her absentee job is submitted. When it runs, it changes to the proper working
directory, compiles the program and produces a listing segment, prints the listing
segment on the line printer and deletes it, runs the program, prints the output
file "file10" on the line printer, and finally, logs out.

To run this same absentee job via remote job entry, MacSissle would put the
statements shown above on cards instead of in a segment. Then she would surround
her cards with control cards and put the deck in a card reader. Her absentee
job would be executed automatically.

The format of a card deck for remote job entry is shown below:

++RJE DECK_NAME PERSON_ID PROJECT_ID
++PASSWORD ~PASSWORD -

++ATIM ACCESS CLASS OF ABSENTEE PROCESS
++RJECONTROL CONTROL ARGS TO THE EAR COMMAND
++RJEARGS ARGUMENTS FOR THE ABSENTEE PROCESS
++EPILOGUE COMMAND

++FORMAT PUNCH_FORMAT MODES

++INPUT

(user absentee file)

The three cards required as a minimum are the first, which is an identifier
card, the second, which is a password card, and the last, which signals the end
of control input

For another example, suppose MacSissle wants to use the prime_ subroutine
discussed in Section 6 to check the prime-ness of the first five integers, and
she wants to use the absentee facility to do it. Remember that prime_ is called
by test prime, and that the index set active function can be used to return a
set of numbers.

7-3 AG90-03



gedx

a

test_prime ([index_set 51)
\f

w testb5.absin

q
r 16:40 0.218 39

MacSissle uses the Qedx editor to create her absin file.

! enter_abs_request test5 -notify
ID 210805.1; 5 already requested
r 16:41 0.450 63

Multics confirms her submission, giving the request id and the number of
previously submitted jobs in the absentee queue. Often, many of these jobs may
be "deferred", which is to say, they will not be run until a later time. Thus,
"5 already requested" doesn't necessarily mean that five jobs must be run before
MacSissle's job will run.

s [ R Aan~0

(
Absentee job >udd>ProjA>MacSissledtest5.absin 210805.1
logged in.

From Initializer.SysDaemon {absentee) 04/21/80 1641.4 mst Mon:
1

MacSissle used the -notify control argument on her ear command, so the
system sends her a message when her job logs in.

! who -absentee

Absentee users 3/9
JQUser.ProjB¥
TSmith.ProjA¥%
MacSissle.ProjA¥

r 16:42 0.272 22

MacSissle uses the who command to print a 1list of all absentee jous. It
shows that there are three already running, and that a total of nine can run at
one time. Absentee users are identified by the asterisk after their project.

From Initializer.SysDaemon (absentee) 04/21/80 1643.1 mst Mon:
Absentee job >udd>ProjA>MacSissled>test5.absin 210805.1
logged out.

The system also sends her a message when her job logs out.

7-4 AG90-03



! print test5.absout
test5.absout 04/21/80 1643.6 mst Mon

Absentee user MacSissle ProjA logged in: 04/21/80 1641.4 mst Mon
r 16:41 2.364 55

test_prime ([index_set 51])
is a prime

is a prime

is a prime

is not a2 prime

is a prime

16:42 0.198 20

STNEWN

abs_io_: Input Stream exhausted.

Absentee user MacSissle ProjA logged out 04/21/80 1643.1 mst Mon
CPU usage 3 sec, memory usage 1.0 units

MacSissle's job is done, so she prints the absout segment.

With more advanced use of the absentee facility, you can also supply arguments
to be substituted inside the absentee control segment, make absentee job steps
conditional, delay absentee work until a chosen time, and develop a periodic
absentee job which is run, say, once every two days.

The next example shows how absentee jobs can accept arguments.

! print prime.absin
prime.absin 04/21/80 1655.7 mst Mon
test_prime ([index_set &11)

r 16:55 .110 19

This absin segment accepts one argument. The character string "&1" is
replaced by the argument wherever it occurs. MacSissle tests it by invoking it
as an exec_com. In order to use the absin segment as an exec com, it must have
a name with the suffix "ec" added to it. -

! add_name prime.absin prime.ec
r 16:56 0.100 5

! exec_com prime.ec 2
test_prime ([index_set 2])
1 is a prime
2 is a prime

r 17:00 0.210 30

MacSissle invokes the exec_com with the argument 2. As it runs, it prints
the commands in the file. The argument mechanism seems to work, so she submits
an absentee job.

7-5 AG90-03



! enter_abs_request prime.absin -arguments 100
ID: 221023.4; 6 already requested.
r 17:05 0.273 50

Here, the argument 100 is passed to the absentee job. MacSissle goes about
other business while the request runs.

A common problem for many users is an absentee job that blows up unexpectedly
because it is asked an unanticipated question, and the user has not provided an
appropriate answer. For example, a job may be asked, "Do you wish to quit?" It
can try to use its next command for an answer, but it will be told to "Please
answer yes or no." At this point, the job will probably die.

Suppose MacSissle has set up a daily absentee job that reads her mail. Her
absin segment, called mail.absin, looks like this:

enter_abs_request mail -time "07:00" -notify
read_mail

print all

quit

dprint -delete mail.absout

MacSissle types the command line
! enter_abs_request mail -time "0T7:00" -notify

once. Her absentee job submits a request for the next absentee job, then reads
her mail. Once in the read_mail request loop, it asks that all of her mail be
printed, then quits out of the loop. Finally, it dprints her absout segment.

This job seems like it should work fine. But what will happen if MacSissle
doesn't have any mail? The request to read her mail will return the answer,
"You have no mail"™. Then the request to print all of her mail will return the
answer, "Segment all not found". The request to quit will return a similar
answer. So, the job may not die in this case, but it will give MacSissle some
unexpected results. To avoid this problem, MacSissle can change her absin segment
to look like this:

enter_abs_request mail -time "07:00" -notify
read_mail -request "print all; quit"
dprint -delete mail.absout

Now, if she has no mail, she'll just get the answer, "You have no mail",
which is what she wants.

For further information on absentee Jjobs, see the MPM Commands manual
descriptions of the enter_abs_request and exec_com commands. See also the
descriptions of the plil_abs, cobol_abs, and fortran_abs commands, which invoke
language compilers in absentee jobs.

7-6 AG90-03



SECTION 8

REFERENCE TO COMMANDS BY FUNCTION

A1l of the Multics commands described in the MPM Commands are arranged here
according to function and are briefly described. The Multics command repertoire
is divided into the following 17 groups:

Access to the System

Storage System, Creating and Editing Segments
Storage System, Segment Manipulation
Storage System, Directory Manipulation

Storage System, Access Control

Storage System, Address Space Control

Formatted Output Facilities

Language Translators, Compilers, and Interpreters

Object Segment Manipulation

Debugging and Performance Monitoring Facilities

Input/Output System Control
Command Level Environment
Communication Among Users

Communication with the System

Accounting

Control of Absentee Computations

Miscellaneous Tools

Many commands can perform more than one function, so they are listed in

more than one group.

Detailed descriptions of these commands, arranged alphabetically rather than
functionally, are given in the MPM Commands. In addition, many of the commands
have online descriptions, which you may obtain by invoking the help command.

ACCESS TO THE SYSTEM

dial

echo
enter
enterp
hangup

hello
login
logout

modes
slave

connects an additional terminal to an existing
process

sets terminal into echoplex mode before login

connects an anonymous user to the system
(used at dialup only)

terminates communication between terminal and
Multiecs

repeats greeting message printed when terminal
is first connected

connects registered user to the system (used
at dialup only)

disconnects user from the system

sets terminal modes before login :

changes service type of channel from login to
slave for duration of connection

8-1 AG90-03



terminal_type
MAP

029 and 963

sets terminal type before login

tells system user is attempting to gain access
from terminal whose keyboard generates only
uppercase characters

tells system whether user is attempting to
gain access from device similar to EBCDIC

or Correspondence code IBM Model 2741

STORAGE SYSTEM, CREATING AND EDITING SEGMENTS

adjust_bit_count
canonicalize
compare_ascii
compose

edm

emacs

indent

merge_ascii
gedx

set_bit_count

ted

sets bit count of a segment to last nonzero
word or character

ensures that contents of a segment are in
canonical form

compares ASCII segments, reporting differences

composes formatted documents for production
on various devices, including terminals
and line printers

allows inexpensive, easy editing of ASCII
segments

enters the Emacs text editor, which has a large
repertoire of requests for editing and
formatting text and programs

indents a PL/I source segment to make it more
readable

merges two or more related ASCII text segments

allows sophisticated editing, including macro
capabilities

sets the bit count of a segment to a specified
value

used to create and edit ASCII segments; can
do many kinds of text processing

STORAGE SYSTEM, SEGMENT MANIPULATION

adjust_bit_count

archive
archive_table

compare

compare_ascii
copy

copy_file
create
damaged_sw_off
damaged_sw_on
delete

link

merge_ascii

sets bit count of a segment to last nonzero
word or character

packs segments together to save physical storage

returns the names of specified archive
components in specified archive segment

compares segments word by word, reporting
differences

compares ASCII segments, reporting differences

copies a segment or multisegment file and its
storage system attributes

copies records from an input file to an output
file

creates an empty segment

resets damaged switch off for segments

sets damaged switch on for segments

deletes a segment or multisegment file and
questions user if it is protected

creates a storage system 1link to another
segment, directory, link, or multisegment
file

merges two or more related ASCII text segments

8-2 AG90-03



move

set_bit_count
sort_seg
tape_archive
truncate
unlink
vfile_adjust

volume dump switch off

volume dump_switch on

moves segment or multisegment file and its
storage system attributes to another
directory

sets the bit count of a segment to a specified
value

sorts ASCII segments according to ASCII
collating sequence

performs a variety of operations to create
and maintain a set of files on magnetic
tape

truncates a segment to a specified length

removes a storage system link

adjusts structured and unstructured files

turns off the specified volume dump switch of
a segment

turns on the specified volume dump switch of
a segment

STORAGE SYSTEM, DIRECTORY MANIPULATION

add_name
cancel retrieval_ request
copy_dir

create_dir
delete_dir

delete name

enter_retrieval request
link

list_retrieval requests

list
move_dir

rename
safety_sw_off
safety_sw_on

status

tape_archive

uniink

vfile_status
volume dump switch_off

volume _dump_switch on

adds a name to a segment, directory, link, or
multisegment file

deletes request for a volume retrieval that
is no longer needed

copies a directory and its subtree to another
point in the hierarchy

creates a directory

destroys a directory and its contents after
questioning user

removes a name from a segment, directory, link,
or multisegment file

queues volume retrieval requests for specific
segments, directories, multisegment files,
and subtrees

creates a storage system 1link to another
segment, directory, link, or multisegment
file

lists retrieval requests in the retrieval daemon
queues

prints directory contents

moves a directory and its subtree to another
point in the hierarchy

renames a segment, directory, 1link, or
multisegment file

turns safety switch off for a segment,
directory, or multisegment file

turns safety switch on for a segment, directory,
or multisegment file

prints all the attributes of an entry in a
directory

performs a variety of operations to create
and maintain a set of files on magnetic
tape

removes a storage system link

prints the apparent type and length of storage
system files

turns off the specified volume dump switch of
a segment

turns on the specified volume dump switch of
a segment

8-3 AG90-03



STORAGE SYSTEM, ACCESS CONTROL

check_iacl
copy_acl
copy_ilacl_dir
copy_iacl_seg
delete_acl
delete_iacl_dir
delete iacl seg
list_accessible

list_acl
list_not_accessible

list_iacl_dir
list iacl seg

print_auth_names

set_acl
set_iacl_dir

set_iacl_seg

compares segment ACLs with the initial ACL

copies ACL from segment or directory

copies a directory initial ACL

copies a segment initial ACL

removes an ACL entry

removes an initial ACL for new directories

removes an initial ACL for new segments

lists segments and directories with a given
access condition

prints an ACL entry

lists segments and directories to which user
does not have a given access condition

prints an initial ACL for new directories

A i
prints an initial ACL for new segments

prints names of sensitivity levels and access
categories for an installation

adds (or changes) an ACL entry

adds (or changes) an initial ACL for new
directories

adds (or changes) an initial ACL for new segments

STORAGE SYSTEM, ADDRESS SPACE CONTROL

add_search_paths
add_search_rules
attach_lv
change_default_wdir
change wdir

delete_search_paths

delete_search_rules
detach_1v

get_system_search_rules

initiate

list_ref names
new_proe
print_default_wdir
print_proc_auth
print_search_paths

print_search_rules

print_wdir
set_search_paths

set search_rules
terminate

walk_subtree

where

adds one or more search paths to the specified
search list

allows users to change (insert) search rules
dynamically

calls the resource control package to attach
a logical volume

sets the default working directory

changes the working directory

allows user to delete one or more search paths
from specified search list :

allows users to delete current search rules

detaches 1logical volumes attached by the
resource control package

prints definitions of site-defined search rule
keywords

adds a segment to the address space of a process

prints all names by which a segment is known
toc a process

creates a new process with a new address space

prints name of default working directory

prints access authorization of the current
process and current system privileges

prints the search paths in the specified search
list

prints names of directories searched for
segments referenced dynamically

prints name of current working directory

allows user to replace search paths contained
in specified search list

allows users to modify search rules

removes a segment from the address space of a
process

executes a command line in all directories
below a specified directory

uses current search rules to locate and print
pathname of a segment

8-4 AG90-03



where_search_paths

FORMATTED OUTPUT FACILITIES

cancel_daemon_request
compose

dprint

dpunch

dump_segment
list_daemon_requests
move_daemon_request

overlay

print

returns absolute pathname(s) of entryname when
search1istnameandentrynamearespecified

cancels a previously submitted daemon request

composes formatted documents for production
on various devices, ineluding terminals
and line printers

queues a segment or multisegment file for
printing on the high-speed printer

queues a segment or multisegment file for card
punching

prints segment contents in octal, ASCII, or
EBCDIC

prints 1list of print and punch requests
currently queued

moves a request from one I/0 daemon queue to
another

reads several ASCII segments and writes on
user_output I/0 switch output that is the
result of superimposing print -positions
from each segment

prints an ASCII segment

LANGUAGE TRANSLATORS, COMPILERS, AND INTERPRETERS

apl

basic

bind

cancel_cobol program

cobol
cobol_abs

create_data_segment
display_cobol_run_unit
expand_cobol_source
fast

format_cobol_source

fortran
fortran_abs

indent
lisp
pl1
plil_abs

profile

run_cobol

invokes the APL interpreter

compiles BASIC programs :

packs two or more object segments into a single
executable segment

cancels one or more programs in the current
COBOL run unit

compiles COBOL programs

submits an absentee request to perform COBOL
compilations

translatesa create_data_segment source program
into an object segment

displays the current state of a COBOL run unit

translates COBOL source program containing COPY
and REPLACE statements to equivalent source
program not containing these statements

allows user to enter FAST subsystem

converts free-form COBOL source to fixed-format
COBOL source

invokes the site's "standard" FORTRAN compiler

invokes the site's "standard" FORTRAN compiler
in an absentee job -

indents a PL/I source segment to make it more
readable :

enters interactive Lisp subsystem, where Lisp
forms can be typed at user's terminal and
evaluated

compiles PL/I programs

invokes the PL/I compiler in an absentee Jjob

prints information about execution of
individual statements within program

executes a COBOL run unit in a main program

8-5 AG90-03



set_cc

set fortran_common
stop cobol run

OBJECT SEGMENT MANIPULATION

archive
archive_table

bind

date_compiled

sets carriage control transformation for
FORTRAN files

initializes common storage for a FORTRAN run

terminates the current COBOL run unit

packs segments together to save physical storage

returns the names of specified archive
components in specified archive segment

packs two or more object segments into a single
executable segment

prints date and time compiled and compiler
identifier for object segments

DEBUGGING AND PERFORMANCE MONITORING FACILITIES

attach_audit
change_error_mode
cumulative_page_trace
debug
display_audit_file
dispiay_pliio_error
dump_segment

general ready
page_trace

probe
profile

progress

ready

ready_off

ready_on
reprint_error
resolve_linkage_error

trace

trace_stack

INPUT/QUTPUT SYSTEM CONTROL

assign_resource
cancel_resource

cancel_daemon_request
close_file

copy_cards
copy_file

sets up specified I/0O switch to be audited by
the audit I/0 module

adjusts length and content of system condition
messages

accumulates page trace data

permits symbolic source language debugging

displays the file produced by the audit_ I/0

module

displays diagnostic information about PL/I I/C
errors

prints segment contents in octal, ASCII, or
EBCDIC

allows user to format ready messages

prints a history of system events within calling
process

permits program debugging online

prints information about execution of
individual statements within program

prints information about the progress of a
command as it is being executed

prints the ready message: a summary of CPU
time, paging activity, and memory usage

suppresses the printing of the ready message

restores the printing of the ready message

reprints an earlier system condition message

satisfies 1linkage fault after a process
encounters a linkage error

permits the user to monitor all calls to a
specified set of external procedures

prints stack history

assigns peripheral equipment to user

cancels reservations made with the reserve
command

cancels a previously submitted print or punch
request

closes open PL/I and FORTRAN files

copies card decks read by I/0 Daemon

copies records from an input file to an output
file

8-6 AG90-03



discard_output

display_plilio_error
dprint
dpunch

file output
io_call

line_length
list_daemon_requests
list_resource_types
list_reéources

print

print_attach_table

print_request_ types
reserve_resource

tape_archive
unassign resource

vfile_adjust
vfile status

COMMAND LEVEL ENVIRONMENT

abbrev
add_search_paths
add_search_rules

answer
attach_audit

change_default_wdir
change_error_mode

change wdir
delete_search paths

delete_search_rules
detach_audit
display_audit_file
do

exec_com

fast
file_output

executes a command 1line while temporarily
suppressing output on specified I/0
switches

displays diagnostic information about PL/I I/O
errors

queues a segment or multisegment file for
printing on the high-speed line printer

queues a segment or multisegment file for card
punching

directs terminal output to a file

allows direct calls to input/output system
entries

allows users to control maximum length of output
lines

prints 1list of print and punch requests
currently queued

prints a list of all resource types desecribed
in a resource type description table (RTDT)

lists peripheral equipment assigned to user

prints an ASCII segment

prints list of current input/output system
switch attachments

prints available I/0 Daemon request types

reserves resource(s) for use by the calling
process

performs a variety of operations to create
and maintain a set of files on magnetic
tape

unassigns peripheral equipment assigned to user

adjusts structured and unstructured files

prints the apparent type and length of storage
system files

allows user-specified abbreviations for command
lines or parts of command lines

adds one or more search paths to the specified
search list

allows users to change (insert) search rules
dynamically

answers questions normally asked of the user

sets up specified I/0 switch to be audited by
the audit I/0 module

sets the default working directory

adjusts length and content of system condition
messages

changes the working directory

allows user to delete one or more search paths
from specified search list

allows users to delete current search rules

removes audit_ from specified switch

displays the file produced by the audit_ I/0

module
expands a command line with argument
substitution

allows a segment to be treated as a 1list of
executable commands

allows user to enter FAST subsystem

directs terminal output to a file

8-7 AG90-03



gecos

general_ready
get_system_search_rules

if
line_length
memo

new_proc
on

print_default_wdir
print_search_paths

print_wdir
program_interrupt

ready
ready_off
ready_on
release

repeat_query

reprint_error
resolve_linkage error

run

set_search_paths

set_search_rules
set_tty

start
stop_run

where_search_paths

COMMUNICATION AMONG USERS

accept_messages
defer_messages

delete_message
immediate_messages
print_mail
print_messages
read_mail

invokes GCOS environment simulator to run single
GCOS job in user's process

allows user to format ready messages

prints definitions of site-defined search rule
keywords

conditionally executes a command line

allows users to control maximum length of output
lines

allows users to set reminders for later printout

creates a new process with a new address space

establishes handler for specified set of
conditions, executes imbedded command line
with handler in effect, reverts handler

prints name of default working directory

prints the search paths in the specified search
list

prints names of directories searched for
segments referenced dynamically

prints name of current working directory

provides for command reentry following a quit
or an unexpected signal

prints the ready message: a summary of CPU
time, paging activity, and memory usage

suppresses the printing of the ready message

restores the printing of the ready message

discards process history retained by a quit
or an unexpected signal interruption

repeats the last query by the command_query
subroutine

reprints an earlier system condition message

satisfies 1linkage fault after a process
encounters a linkage error

provides user with temporary, somewhat
isolated, environment for execution of
programs

allows user to replace search paths contained
in specified search list

allows users to modify search rules

prints and sets modes associated with user's
terminal

continues process at point of a quit or an
unexpected signal interruption

effects abnormal termination of run-unit
created by run command

returns absolute pathname(s) of entryname when
search list name and entryname are specified

initializes the process to accept mecsages
immediately

inhibits the normal printing of received
messages

deletes messages saved in user's mailbox

restores immediate printing of messages

prints all messages in a mailbox

prints any pending messages

provides a facility for examining and
manipulating messages

8-8 AG90-03



send_mail
send_message

send_message_acknowledge
send_message_express
send_message_silent

who

COMMUNICATION WITH THE SYSTEM

cancel retrieval request
check_info_segs
damaged_sw_off
damaged_sw_on

help

how_many users
enter_retrieval request
list_help
list_retrieval requests
move_abs_request
no_save_on_disconnect
print_motd
save_on_disconnect
volume_dump_switch off

volume_dump switch_on

who

ACCOUNTING

get_quota
move quota

resource_usage

transmits a message to one or more recipients
sends message to specified user

sends message and acknowledges its receipt
sends message only if user will receive it

immediately

sends message but does not acknowledge its
receipt

prints list of users and absentee jobs currently
logged in

deletes request for a volume retrieval that
is no longer needed

checks information (and other) segments for
changes

resets damaged switch off for segments

sets damaged switch on for segments

prints special information segments

prints the number of logged-in users

queues volume retrieval requests for specific
segments, directories, multisegment files,
and subtrees

displays names of all info segments pertaining
to a given topic

1istsretrievalrequestsinther@trievaldaemon
queues

moves a request from one absentee queue to
another

disables process preservation across hangups
in user's process

prints the portion of the message of the day
that changed since last printed

reverses effeet of no_save on_disconnect
command

turns off the specified volume dump switeh of
a segment

turns on the specified volume dump switch of
a segment

prints list of users and absentee jobs currently
logged in

prints secondary storage quota and usage

moves secondary storage quota to another
directory

prints resource consumption for the month

8-9 AG90-03



CONTROL OF ABSENTEE COMPUTATIONS

cancel abs_request
cobol_abs

enter_abs_request
fortran_abs

how_many_users
list_abs_requests

move_abs_request

MISCELLANEOUS TOOLS

calc
calendar
canonicalize

decode
encode
manage_volume_pool

memo
merge
progress

sort

cancels a previously submitted absentee job
request

submits an absentee request to perform COBOL
compilations

adds a request to the absentee job queue

invokes the site's "standard" FORTRAN compiler
in an absentee job

prints the number of logged-in users

prints list of absentee job requests currently
queued

moves a request from one absentee queue to
another

invokes the PL/I compiler in an absentee job

invokes the runoff command in an absentee job

prints list of users and absentee jobs currently
logged in

performs specified calculations

prints a calendar page for one month

ensures that contents of a segment are in
canonical form

deciphers segment, given proper coding key

enciphers segment, given a coding key

allows users to regulate use of a predefined
set of volumes

allows users to set reminders for later printout

provides generalized file merging capability

prints information about the progress of a
command as it is being executed

provides generalized file sorting capability

8-10 AG90-03



APPENDIX A

USING MULTICS TO BEST ADVANTAGE

You may, if you wish, treat Multies as simply a PL/I, FORTRAN, APL, BASIC,
or COBOL machine, and contain your activities to just the features provided in
your preferred programming language. On the other hand, much of the richness of
the Multics programming environment involves use of system facilities for which
there are no available censtructs in the usual languages. To use these features,
it 1is generally necessary to call upon library and supervisor subroutines.
Unfortunately, a simple description of how to call a subroutine may give little
clue as to how it is intended to be used. The purpose of this appendix is to
illustrate typical ways in which many of the properties of the Multics programming
environment may be utilized.

When you choose a language for your implementation, you should carefully
consider the extent to which you will want to go beyond your language and use
system facilities of Multics which are missing from your language. As a well-known
standard for completeness of that language (e.g., ANSI or IBM). However, in
going beyond the standard languages, you will find that Multics supervisor and
library routines are designed primarily for use from PL/I programs. This results
from the fact that most of these routines are themselves implemented in PL/I.
For example, if you plan to write programs which directly call the Multics
storage system privacy and protection entries, in FORTRAN or BASIC, you have no
convenient way to express such structures. Note that the situation is not hopeless,
however. Programs which stay within the original language can be written with
no trouble. Also, in many cases, a trivial PL/I interface subroutine can be
constructed, which is callable from, say, a FORTRAN program, and goes on to
reinterpret arguments and invoke the Multics facility desired. This is made
possible by the Multics conventions which ensure that FORTRAN and PL/I programs
can communicate. (For more information, see the MPM Subsystems Writers' Guide.)
Using such techniques, almost any program a standard call is performed, the
argument pointer is set to point at the originally prepared for another system
can be moved into the Multics environment.

The examples which follow show that the effect of the mapping together of
the main memory and secondary storage environments can range from the negligible
(programs can be written as though there was a traditional two-environment system)
to a significant simplification of programs which make extensive use of the
storage system. Here are seven brief examples of programs which are generally
simpler than those encountered in practice, but which illustrate ways in which
online storage is accessed in Multics.

A-1 AG90-03



1.

Internal Automatic Variables. The following program types the word "Hello"
on four successive lines of terminal output:

a: procedure;

declare i fixed binary;

do i = 1 to U3
put list ("Hello");
put skip;

end;

return;

end aj

The variable i is by default of PL/I storage class internal automatic:
in Multics it is stored in the stack of the current process and 1is available
by name only to program a and only until a returns to its caller. It is
declared binary for clarity: although the default base for the representation
of arithmetic data is binary according to the PL/I standard, as well as in
Multics PL/I, some other popular implementations have a decimal default.
There is no need for decimal arithmetic in this program, and binary arithmetic
is faster.

Internal Static Variables. The following program, each time it is called,
types out the number of times it has been called since its user has logged
in:

b: procedure;
declare j fixed binary internal static intial(0);
J=J3+ 1
put list (j, "calls to b.");
put skip;
return;
end b;

The variable j is of PL/I storage class internal static; in Multies it
is stored in b's static section (discussed in Section 2) and is available
by name only to program b. Its value is preserved for the life of the
process, or until b is terminated {(by the terminate command, recompilation,
etc.), whichever time is shorter. The "initial" declaration causes the
value of j to be initialized at the time this procedure is first used in a
process.

A-2 AG90-03



3-4. External Static. Suppose you wish to set a value in one program and have

it printed by some other program in the same process:

c: procedure;
declare z fixed binary external staticg
Z:ll;
return;g
end c;3

d: procedure;
declare z fixed binary external staticy
put list (z);
put skip;
return;
end d;

In both programs, the variable z is of PL/I storage class external
statie; in Multics it is stored in a particular segment where all such
variables are stored, and is available to all procedures in a particular
process, until the process is destroyed. External static is analogous to
common in FORTRAN, but with the important difference that data items are
accessed by name rather than by relative position in a declaration. Program
d above could be replaced by the following FORTRAN program:

integer n
common /z/ n
print, n

end

Multics calls such data items external variables. There are commands
(for example, list_external_variables) to 1ist, reinitialize, and otherwise
deal with all the external variables used by a process. Each variable
which is accessed in this form generates a linkage fault the first time it
is used. Later references to the variable by the same procedure in that or
subsequent calls do not generate the fault.

Direct Intersegment References. The following program prints the sum of
the 1000 integers stored in the segment w:

e: procedure;
declare w$(1000) fixed binary external static;
declare (i, sum) fixed binary;
sum = 03

do i = 1 to hbound (w$,1);
sum = sum + w$(i);

end;

put list (sum);

put skip;

return;

end e;

A-3 AG90-03



The dollar sign in the PL/I identifier "w$" is recognized as a special
symbol by the PL/I compiler, and code for statement 6 is constructed which
anticipates dynamic linking to the segment named w. Upon first execution,
a linkage fault is triggered, and a search undertaken for a segment named
W. If one is found, the link is snapped, and all future references will
occur with a single machine instruction. The storage for array "w$" is the
segment Ww. __

If no segment named w is found, the dynamic linker will report an
error to the user and return to command level. At this point, it is possible
to create an appropriate segment named w, and then continue execution of
the interrupted program, if such action is appropriate.

Reference to Named Offsets. The following procedure calculates the sum of
1000 integers stored in segment x starting at the named offset u:

f: procedure;
declare x$u(1000) fixed binary external static;
declare (i, sum) fixed binary;
sum = O3
doi=1to 1000;
sum = sum + x$u(i);
end;
put list (sum);
put skip;
return;
end f;

The difference between this example and the previous one is that segment
x is presumed to have some substructure, with named internal 1locations
(entry points). To initially create a segment with such a substructure,
the compilers and assemblers are used, since information must be placed in
the segment to indicate where within it the entry points may be found.
Unfortunately, the PL/I language permits specification of such structured
segments only for procedures, not for data. .The create_data segment
subroutine can be used in conjunction with the create_data_segment (eds)
command to create such data segments from PL/I data structures passed to it
as parameters. The create_data_segment command translates a CDS source
program into a data segment {actually a standard object segment). A sample
CDS source program, x.cds, is shown below:

Xt procedure;
declare 1 x aligned,
2 u(1000) fixed binary;
declare create data_segment_ entry (ptr, fixed binary (35));
. (overhead required to utilize create_data_segment_)
call create_data_ segment_ <cds_args>;
return;
end x;

A-4 AG90-03



The ALM assembler can also be used to create a structured data segment, as
shown by x.alm below:

name x
segdef u

u: bss 1000
end

External Reference Starting With a Character String. In many cases, a
segment must be accessed whose name has been supplied as a character string.
In those cases, a call to the Multics storage system is required in order
to map the segment into the virtual memory and to obtain a pointer to it.
The following program uses the supervisor entry hes_$make ptr to perform a
search for a segment of a given name, identical to that undertaken by the
linker in the previous examples.

g: procedure(string);
declare string character(*) parameter;
declare hcs_$make ptr entry (pointer, character(¥),
character(¥), pointer, fixed binary(35));
declare null builting
declare p pointer;
declare ec fixed binary (35);
declare hes_$terminate_seg entry (ptr, fixed binary (1),
fixed binary (35));
declare com_err entry options (variable);
declare (i, sum) fixed binary;
declare v(1000) fixed binary based(p);
call hes_$make_ptr (null (), string, "eop, ec);
if p= null then do;
call com_err_ (ec, "g", ""a", string);
return;
end;
sum = 03
do i = 1 to 10003
sum = sum + p v(i);
end;
/% The segment should be terminated, since it was
initiated ¥/
call hes_$terminate_seg (p, 0, (0));
return;
end g3

The PL/I null string value ("") indicates that it is not a named entry
point in the segment to which a pointer is wanted, but a pointer to its
base. Perhaps the segment does not even have named entry points. The PL/I
null pointer value (null() ) and the zero passed by value ((0)) in the call
to hes_$make_ptr are relevant to its handling of error conditions and some
of the parameters of the search for the segment. See the MPM Subroutines
for a full description of the hcs_$make_ptr subroutine.

A-5 AG90-03



8. Reference to Segment Via Pathname. The following procedure finds a segment
specified by an absolute or relative pathname given as an argument. Most
Multics commands accept pathnames and find the segments they are to operate
on in this fashion. This procedure also adds all the numbers in the segment,
obtaining the number of entries in the array by using the bit count of the
segment.

h: procedure(string);
declare string char(¥);
declare expand_pathname_ entry (char(¥*), char(¥), char(¥), fixed
binary(35));
declare dn char(168), en char(32), ec fixed binary(35);
declare com_err_ entry() options(variable);
declare hes $initiate count entry char(¥), char(¥), char(¥), fixed
binary(2T), fixed binary(2), ptr, fixed binary(35));
declare null builtin;
declare be fixed binary(24);
declare p ptr;
declare nwords fixed binary;
declare i fixed binary;
declare sum fixed binary (35);
declare w (nwords) fixed binary(35) based (p);
declare hes_$terminate_noname entry (ptr, fixed binary (35));
declare sysprint file;
call expand_pathname_ (string,dn,en,ec);
if ec "= 0 then do;
err: call com_err_ (ec,"h",""a",string);
return;
end;
call hes$initiate_count (dn,en,"",bc,0,p,ec);
if p = null then goto err;
nwords = divide (be,36,17,0);
sum = O3
do i = 1 to nwords;
= sum + w(i);

call hes_$terminate_noname (p,(0));
put list (sum);
put skips;

end h;

The expand_pathname_ procedure is a library subroutine which accepts a relative
or absolute pathname and returns the directory name and entryname ready for use
by supervisor entries such as hes_$initiate_count. No search for the segment
specified is undertaken in this case. Since the segment was initiated with a
null reference name (third argument to hcs_$initiate_count), the procedure is
responsible for terminating it as well.

Further improvements to this procedure are possible. It lacks the ability
to handle several common error cases; if no argument is supplied, for example,
the program will malfunction. Code to handle this possibility should be included,
as well as code to handle the possibility of a zero-length input segment, or the
possibility of a fixed point overflow.

A-6 AG90-03



APPENDIX B

A SIMPLE TEXT EDITOR

The sample program discussed in this appendix is a printing-terminal text
editor similar to, but simpler than, Edm. (See Appendix D for a description of
Edm.) It is a typical example of an interactive program which makes use of the
Multics storage system via the virtual memory. In overview, the editor creates
two temporary storage areas, each large enough to hold the entire text segment
being edited; copies the segment into one of these areas, so as not to harm the
original; and then, as the user supplies successive editing requests, constructs
in the other area an edited version of the segment. When the user finishes a
pass through the segment, the editor interchanges the roles of the two storage
areas for the next editing pass. When the user is done with the editor, the
appropriate temporary storage area is then copied back over the original segment.
This example is not intended to be a model for designing or implementing text
editors, but rather, an illustration of the techniques used in interactive Multics
PL/I programs, particularly commands.

For this example, a program listing as produced by the PL/I compiler is
used. The program itself is derived from the edm command of Multies, and it
exhibits several different styles of coding and commenting, since it has had
many different maintainers.

The program listing is preceded by several pages of comments on the program.
The comments appear in the same order as the item(s) in the program that they
comment on. Where possible, they refer to line numbers in the program listing.
Unfortunately, programs do not always invoke features in the best order for
understanding, so the following strategy may be useful: as you read each comment,
if its implications are clear and you feel you understand it, check it off. If
you encounter one which does not fit into your mental image of what is going on,
skip it for the moment. Later comments may shed some light on the situation, as
will later reference to other Multies documentation. Finally, a hard core of
obscure points may remain unexplained, in which case the advice of an experienced
Multics programmer is probably needed. Be warned that the range of comments is
very wide, from trivial to significant, from simple to sophisticated, and from
obvious to extremely subtle.

Finally, some comments provide suggestions for "good programming practice".
Such suggestions are usually subjective, and often controversial. Nonetheless,
the concept of choosing among various possible implementation methods one which
hasclarity,isconsistent,andminimizessideeffectsisvaluable,sothesuggestions
are provided as a starting point for the reader who may wish to develop his own
style of good programming practice.

You will also notice that some comments appear to be critical of the program
style or of interfaces to the Multics supervisor. These comments should be
taken in a spirit of illumination of the mechanisms involved. Often they refer
to points which could easily be repaired, but which have not been in order to
provide a more interesting illustration. Most of the points criticized are
minor in impact.

B-1 AG90-03



The program listing appears after the commentary.

Line number

fifth unnumbered line

3,“,5

12

The command "pl1l eds -map -optimize" was typed at the terminal. This
line records the fact that the map and optimize options were used.
The map line option caused a listing and variable storage map to be
produced. A source segment named eds.pll was used as input; the compiler
constructed output segments named eds.list (containing the 1listing)
and eds (containing the compiled binary program.)

No explicit arguments are declared here, even though eds should be
called with one argument. Instead, the keyword "options (variable)™
appears, which indicates that this program can be called with a variable
number of arguments. This is a Multics extension to ANSI PL/I. Since
eds is used as a command, it is a good human engineering practice to
check explicitly for missing arguments; the PL/I language has no feature
to accomplish this check gracefully. Library subroutines are available
to determine the number and type of arguments supplied (see 1lines
102-121). All Multics commands are declared and process their arguments
in this way.

It is common practice to include a short comment at the beginning of
every program which briefly describes it. This should be followed by
a comment or series of comments identifying the date of writing and
original author, and the date, author and purpose of any subsequent
modifications. This history, or "journalization" as it is called, is
very helpful to others who may wish to modify the program in the
future.

To avoid errors when program maintenance is performed by someone other
than the original coder, all variables are explicitly declared. This
practice not only avoids surprises, but also gives an opportunity for
a comment to indicate how each variable is used.

One default which is used here (and is subject to some debate) is that
the precision of fixed binary integers is not specified, leading to
use of fixed binary(17). This practice has grown up in an attempt to
allow the compiler to choose a hardware-supported precision, and in
fear that an exact precision specification might cause generated code
to check and enforce the specified precision at (presumably) great
cost. In fact, the PL/I language does not require such checks by
default (although they can be specified). Thus, it is usually wise to
specify data precision exactly. In some cases (for instance, all of
the fixed binary (21) variables used to hold string lengths), the
compiler might attempt to hold these values in half-length registers
were this precision not specified.

However, a large class of variables which will contain "small or reasonable
size integers"™ can still Dbe conveniently declared with the
implementation's default precision.

A1l character strings in this program are declared unaligned, by the
defaults of the language. Given the fact that the Multics hardware
has extremely powerful and general string manipulation instructions,
no advantage is to be gained in speed or length of object code by
declaring strings (when they are over two words, or eight characters,
long) with the aligned attribute.

Therefore, almost all supervisor and library subroutines which accept
character string arguments require unaligned strings. By the rules of
PL/I, aligned and unaligned strings may not be interchanged as parameters,
and thus, there is incentive to avoid aligned character strings in all
cases.

B-2 AG90-03



14

15

23,24

24,50

43

56

All line buffers are designed to hold one long typed line (132 characters
for input terminals with the widest lines), plus a moderate number of
backspace/overstrike characters. To support memorandum typing, the
buffers permit a 70-character line which is completely underlined.

By use of temporary segments as work areas (see line 149), an almost
unlimited number of nearly infinite work-variables can be constructed,
virtually avoiding the "fixed length buffer" problem. However, the
acquisition and maintenance of such segments are not as cheap as PL/I
automatic variables, and judgement should be exercised as to where
traditional "fixed length® variables are appropriate.

The variable named "code" has precision 35 bits, since it is used as
an output argument for several supervisor entries which return a fixed
binary(35) value. Almost all supervisor and library subroutine entries
return an "error code" value, which indicates the degree of success of
the operation requested. The values of system error codes require 35
bits. It would seem appropriate, on a 36-bit machine, to use fixed
binary(35) declarations everywhere. However, use of fixed binary(35)
variables for routine arithmetic should be avoided since, for example,
addition of two such variables results in a fixed binary(36) result,
foreing the compiler to generate code for double precision operations
from that point on. We must be careful of the PL/I 1language rule
which requires the compiler to maintain full implicit precision on
intermediate results.

Legal PL/I overlay defining can be an extremely powerful tool for
increasing the readability and maintainability of code. . The variable
"commands" is declared here as occupying the same storage as the variable
"buffer”, but only being as long as that part of it which contains
valid characters, as defined by the value of "count". Thus, we need
only write "commands" when we want the portion of "buffer" that has
valid data in it, instead of "the substring of 'buffer! starting at
the first character for 'count' characters."

All editing is done by direct reference to virtual memory locations.
The wvariable "from ptr" is set to point to a source of text, and the
based variable "from_seg" is used for all reference to that text. The
number 1048576 (two to the twentieth power) is the largest possible
number of characters in a segment.

The general operation of the editcr is to copy the text from one
storage area to another, editing on the way. The names "from_seg" and
"to_seg" are used for the two storage areas.

One set of supervisor interfaces calls for 24 bit integers; this
declaration guarantees that no precision conversion is necessary when
calling these interfaces. (See line 133.)

The PL/I language provides no direct way to express literal control
characters. The technique used here, while it clutters the program
listing, at least works. The string is typed as a quote, a newline, a
tab, a space, and a quote. This order is used because it produces the
least ambiguous printed representation; for instance, had the tab and
space been reversed, it would not be possible to distinguish by observation
between the space, tab sequence and a single tab.

PL/I does not provide any "named constant" facility, either. The Multics
PL/Iimplementationallowsthe"options(constant)"attributeforinternal
static variables, which instructs the compiler to allocate the variable
in the pure (unmodifiable) portion of the object segment. This is
advantageous for three reasons: first, if an attempt is made to modify
such a variable, the hardware will detect an error, thus checking and
enforeing its M"constant" use; second, it allows the variable to be
shared between processes, conserving storage; third, it is an indication
to others reading the program that a "named constant™ is intended.
These "constants" are customarily given all uppercase names, as an
additional hint to the reader of their constant nature; this is a
standard Multies PL/I convention.

B-3 AG90-03



64,77

65

65

67

70

90

92

102

103

Subroutines com err_ and ioa_ are called with a different number of
arguments each time, a feature not normally permitted in PL/I. The
Multies implementation, however, has a feature to permit such calls.
The "options" clause warns the compiler that the feature is used for
this external subroutine.

A1l subroutines other than com err_ and ioa_ are completely declared
in order to guarantee that the compiler can check that arguments being
passed agree in attribute with those expected by the subroutine. Warning
diagnostics are printed if the compiler finds argument conversions
necessary. (A1l of the subroutines used by this program are described
in the MPM Subroutines Manual.

The procedure cu_ (short for command utility) has many different entry
points. The Multics PL/I compiler specially handles names of external
objects which contain the dollar sign character. The dollar sign is
taken to be a separator between a segment name and an entry point name

in the compiled external linkage. Thus, this line declares the entry
point name arg_ptr in the segment named cu_.

For many procedures, the segment name and entry point name are identical,
so the compiler also permits the briefer form cv_dec_, which is handled
identically to cv_dec_$cv_dec_.

The hardcore (ring zero) supervisor entries (hardcore gates) are all
easily identifiable since they are entered through a single interface
segment named hes_. Segment hes_ consists of just a set of transfers
to the subroutine wanted. A transfer vector is used to isolate, in
one easily available location, all gates into the Multics supervisor.
(There are in fact hardcore gate segments other than hes_, but you
will probably not have occasion to deal with them.) For a discussion
of the ring structure and hardcore gates, see the MPM Reference Guide.

The program will need to know what I/0 switches will be used in order
to perform certain I/0 operations. I/0 switches are the general
source/sink I/0 facility of Multies. Multies PL/I programs manipulate
I/0 switches as PL/I pointer values. The two external variables declared
on this line contain the pointer values identifying the standard terminal
input and terminal output switches.

As mentioned above, system error codes are returned by most supervisor
and library subroutine entries. In one case, we will need to know if
a specific error (see line 142) was returned by a supervisor entry. A
segment (error_table_) exists which has entry point definitions for
external static variables (see Appendix A) containing all the possible
values that can be returned as errors by system routines. The variable
error_table $noentry contains the value returned as an error code by

system routines to indicate that "the entry you specified in the directory
you specified does not exist".

The first order of business is to determine how many arguments were
supplied to the command, and also to find out whether the command was
called properly. This is done by calling a library subroutine.

If the error code from cu_$arg count is nonzero, 1t means that the
program which called cu_$arg_count was not invoked as a command. This
usually indicates attempted use as an active funetion, which is invalid
for eds.

Bl AG90-03



104

105

109

113~

117

125

134

The library subroutine com_err 1is called to print out the error message
describing the invalid call. It produces an English explanation
associated with the error code, which is obtained from a system-wide
table (the error_table ). It also causes terminal output to be produced
even if the user is temporarily diverting output to a file. 1In general,
com_err_ should be called to report all command usage and operation
errors. The output from such a call looks like this:

eds: This command cannot be invoked as an active function.

A Multiecs command exits simply by returning to its caller. (See also
line 437). It should, however, clean up allocated storage, terminate
segments, and return temporary segments if it needs to. In general, a
program should do exactly the same things when it exits normally as
its cleanup handler does. These actions are omitted for this return
(and the next) because the program has yet to do anything which would
require cleaning up, and because the variables which would inform the
cleanup handler of its job have not yet been set. (See lines 133-134.)

The eds editor must be invoked with exactly one argument. If it is
not, we wish to print a message describing what was wrong, and suggesting
the proper usage. This message is produced by picking an appropriate
standard error table code to describe the error, and assigning it to
code. All the standard error_table codes are listed in the MPM Reference
Guide, Section 7.

The com_err_ subroutine, as well as the ioa_ subroutine (see 1line
162), allows substitution of parameters in its message. The ""a" string
here 1is used to get the command name into the error message. It is
done this way, rather than simply putting "eds" in the message, to
make it possible to change the name of the program by changing only
the declaration of MYNAME.

After verifying that the right number of arguments (one) was supplied,
we access the argument. As pointed out above, this is done via library
subroutineratherthanPL/Iparameterpassing. Since the command argument
is nominally unlimited in length, cu_$arg ptr returns a pointer to the
argument as stored by the command processor, and its 1length. The
based variable "sname" will describe the argument once this pointer
and length are obtained. The last argument is a zero, passed by value,
because it is known that there is exactly one argument, and there is
therefore no reason to receive or check the error code. This should
only be done when it is guaranteed that no error can arise from the
call, since it will otherwise result in faults.

We must now convert the argument to a standard (directory name, entry
name) pair. The subroutine expand_pathname_ implements the system-wide
standard practice of interpreting the typed argument as either a pathname
relative to the current working directory, or an absolute pathname
from the root, as appropriate.

The program will soon acquire (on line 149) a process resource, namely
two temporary segments from the process's pool of temporary segments.
When the program is finished executing, it will return them (line 589)
to the pool. However, the program may be interrupted (perhaps by a
QUIT, or a record quota overflow), and the user may abandon its stack
frame (perhaps via the "release" command) . In this case, it would
seem that the program would not get a chance to return its "borrowed"
resources. However, Multics defines the "eleanup" condition, which is
signalled in all procedures when their stack frame is about to be
irrevocably abandoned. (Refer back to Figures 5-1 and 5-2.) The handler
for the cleanup condition invokes the procedure "cleanup", which
relinquishes these resources.

B-5 AG90-03



139

141

142

143

149

The array "temp_segs" is initialized to null pointer values before
establishing the cleanup handler, so that the content of the array is
well defined at all times. (The release_temp_segments__subroutine checks
for null pointer values, and performs no action if it encounters them.)
Otherwise, if the cleanup handler were invoked before the temporary
segments were acquired, the pointer array would have undefined, probably
invalid values, and the call to release the temporary segments would
have unpredictable results.

The cleanup handler is established before the temporary segments are
reserved. This sequence guarantees that there will be no "window" in
which the program can be abandoned between the time that the segments
are acquired and the time that the cleanup handler is set up.

The supervisor entry point hes_$initiate_count is invoked to map the
segment specified by the (diréctory name, entry name) pair into the
process’s virtual memory. It returns a pointer to the segment, which
it constructs from the segment number by which the segment was mapped
into the virtual memory of the process (made known). If the segment
was already “"known", i.e., in the process's address space, the segment
number from the existing mapping will be used to create a pointer to
return. Refer to the MPM Reference Guide, Section 4, for details.

The PL/I null string ("") is a special signal that no (possibly additional)
reference name is to be initiated for the segment.

Unfortunately, the zero/nonzero value of the return code from
hes_$initiate_count cannot be used to check whether the initiation
(mapping into the address space) succeeded. In the particular case of
this subroutine and hcs_$initiate, a nonzero error code is returned in
the ostensibly successful case of the segment having already been in
the address space or the process, a case which is rarely an error.

These two subroutines are defined to return a nonnull pointer value if
and only if the segment has been successfully mapped into the address
space, whether by prior act or anew. Thus, testing the return pointer
for the PL/I null pointer value 1is the appropriate test for success.

The editor (eds) will create a new segment (see line 496) if an attempt
is made to edit a segment which does not exist. By comparing the
value of the error code returned from hes_$initiate count with the
system error code stored in the variable error_table_§hoentry, we can
differentiate the case of failure to initiate simply because the segment
did not exist from all other cases (e.g., incorrect access to the
segment specified).

The pathname subroutine is used here to return a string, which is
then substituted into the message produced by com_err , which is the
representation of the pathname. This cannot be done by simply
concatenating the dir_name, a ny>n_ and the entry_name, since if the
dir name were ">" (the root directory), this would result in &n invalid
pathname containing the sequence ny>n,

A pool of segments in a process directory is maintained by the
get_temp_segments_ and release_temp_segments_ subroutines. These
segments are doled out to commands and subsystems which request them
{(via get_ﬁemp_segments_) and it is expected that they will be returned
to the pool when there is no further use for them. This facility
avoids the need for user programs to create and delete (or attempt to
manage or share) segments needed on a "scratch" or "temporary" basis
(for work areas, buffers, etc). Segments obtained from this facility
are guaranteed to contain all zeros (truncated) when obtained.

B-6 AG90-03



161

162

165

165

166

167

The number of segments to be obtained is determined by get temp segments

from the extent of the pointer array parameter. The name of thé_subsysteﬁ
is passed to get_temp_segments_ both to facilitate additional checking
by release_temp_segments, and to support the 1ist_temp_segments command,
whichdescribeswhichsubsystemsiflaproeessareusingtemporarysegments.

If the segment specified on the command line does not exist, the editor
is to assume that it is creating a new segment, and go into input
mode. The value of the variable "source_ptr" will be null if this is
the case.

The ioa_ subroutine is a handy library output package. It provides a
format facility similar to PL/I and FORTRAN "format" statements, and
it automatically writes onto the I/0 stream named user_output, which
is normally attached to the interactive user's terminal. When used as
shown, it appends a newline character to the end of the string given.
Programmers who are more concerned about speed and convenience than
about compatibility with other operating systems use ioa_ in preference
to PL/I "put" statements, because ioa is cheaper, easier to use, and
far more powerful. -

The formatting facilities of ioa are used in a simple way in this
example. The circumflex (""") in the format string indicates where a
converted variable is to be inserted; the character following the
circumflex indicates the form (in this case, a character string) to
which the variable should be converted. The first argument is the
format string, remaining arguments are variables to be converted and
inserted in the output line.

The storage system provides for every segment a variable named the
"bit count". For a text segment, by convention, the bit count contains
the number of information bits currently stored in the segment. The
bit count of the segment being edited was returned by hes_$initiate count
(hence its name) on line 139. -

This statement converts the bit count to a character count. Note that
we have here embedded knowledge of the number of hardware bits per
character in this program.

The PL/I language specifies that the result of a divide operation
using the division sign is to be a scaled fixed point number. To get
integer division, the divide builtin funetion is used instead. Note
that the precision of the quotient is specified to match its size.

Here, we invoke some of the most powerful features of the Multics
virtual memory. This simple assignment statement copies the entire
source segment to be edited into the temporary buffer named "from_seg".
A single hardware string-copy instruction is generated for this code,
copying data at processor speed. The string-copy instruction may be
interrupted by page faults on either "source_seg" or "from_seg" several
times; after allocating or reading the required page, the instruction
is restarted where it left off. Note that we are regarding the entire
text segment as a simple character string of length "size". We may
regard it this way because the storage representation for permanent
text segments is, by convention, identical to that of a PL/I nonvarying
character string.

Be sure to read the comments embedded in the program, too.

B-T7 AG90-03



175

175

176

180

182

184

189

200

207

225

The standard I/O system is being invoked to read a line from the
user's terminal. The line is read from the I/0 switch identified by
the external pointer iox_$user_input. Although passing the buffer to
be used as a character string would be more convenient, this set of
interfaces was designed with maximal efficiency in mind, and this form
of call is more efficient. Note that it would also be safer than
passing a pointer to the character string, since that would allow PL/I
to check that an appropriate character string was being passed, as
opposed to a pointer, which can point to any data type. This design
demonstrates the frequent tradeoff between efficiency and convenience.

Subroutine iox_$get_line is often used for input rather than the PL/I
statement "read file (sysin) into ...", again because of efficiency
and error-handling considerations. The PL/I facility ultimately calls
on the Multics iox_ package anyway. (Again, if you wished to write a
program which would also work on other PL/I systems, you would be

better advised to use the PL/I 1/0 statements instead.)

It is highly unlikely that a call to read a line from the terminal
will fail. Nevertheless,incasesofpeopledebuggingtheirownextensions
to the Multics I/0 system (a practice intended by the designers of the
1/0 system), it can occur. It is reasonable to abort the entire editor
in this unlikely case rather than repeating the call: presumably that
would repeat the error too.

For the sake of human engineering, the editor ignores blank command
lines. Since complete input lines from the typewriter end with a new
line character, the length of a blank line is one, not zero.

The code to isolate a string of characters on the typed input line is
needed in four places, sc an internal subroutine is used. This subroutine
is not recursive, which makes it possible for the compiler to construct
a one-instruction calling sequence to the internal procedure. Certain
constructs (e.g., variables of adjustable size declared within the
subroutine) will force a more complex calling sequence. For details,
you should review the documentation on the Multies PL/I implementation,
contained in the Multics P1/I Language Specification, Order No. AG94.

Although the dispatching technique used here appears costly, it is
really compiled into very quick and effective code -- 2 machine
instructions for each 1line of PL/T. For such a short dispatching
table, there is really no point in developing anything more elaborate.
If the table were larger, one might use subscripted label constants
for greater dispatching speed.

Human engineering: the typist is forced to type out the full name of
the one "powerful" editing request which, if typed by mistake, could
cause overwriting of the original segment before that overwriting was
intended.

Whenever a message is typed which the typist is probably not expecting,
it is good practice to discard any type-ahead, so that he may ~xamine
the error message, and redo the typed lines in the light of tnis new
information.

The general strategy of the editor is as follows: 1lines from the
typewriter go into the variable named "buffer" (accessed as "commands")
until they can be examined. Another buffer, named "line_buffer" (accessed
as "line") holds the current line being "pointed at" by the eds conceptual
pointer. Subroutine "put" copies the current line onto the end of
to seg, while subroutine "get" copies the next line in from_seg into
the current line buffer.

The procedure get num sets up the variable "n" to contain the value of

thenexttypedintééerontherequestline. Such side-effect communication
is not an especially good programming practice.

B-8 AG90-03



226

237

251, 265

284

422

ha7

456

468

469

500

538-540

551

The delete request is accomplished by reading lines from from seg, but
failing to copy them into to_seg. If deletion were a common operation,
it might be worthwhile to use more complex code to directly push ahead
the pointer in from seg, and thus avoid a wasted copy operation.

More side-effect communication: the variable "edet" is always pointing
at the last character so far examined in the typed request line.

All movement of parts of the material being edited is accomplished by
a simple string substitution, using appropriate indexes.

The locate request is accomplished by use of the index builtin function,
used on whatever is still unedited in from_seg.

A negative number in the next request results in moving the conceptual
pointer backward. The resulting code is quite complex because the eds
editing strategy requires interchanging the input and output segments
before backward scanning, so that the backward scan is with regard to
the latest edited version of the segment.

This code to search a character string backward is recognized by the
compiler as such. Extremely efficient object code to search the substring
backward is generated, using a single hardware instruction. No copies
are made in this fairly expensive-looking statement: it is, in fact,
cheap. Combinations of reverse, index, substr, search, verify, etc.
that seem like they ought to generate efficient code in fact usually
do. The -profile control argument and the profile command are useful
tools for discovering where inefficient code is causing performance
problems.

Before exiting from the editor, the temporary segments should be returned
to the temporary segment manager, and the segment that was initiated
terminated.

Another human engineering point: since the user may have typed several
lines ahead, the error message includes the offending request, so that
he can tell which one ran into trouble and where to start retyping.

Note a small "window" in this sequence of code. If the editor is
delayed (by "time-sharing") between lines U468 and 469, it is possible
that the message on line 468 will be completed, and the user will have
responded by typing one or more revised input lines, all before line
469 discards all pending input. Although in prineciple fixable by a
reset option on the write call, Multics currently provides no way to
cover this timing window. Fortunately, the window is small enough
that most interactive users will go 1literally for years without
encountering an example of a timing failure on input read reset.

Note the practice of copying data into the original segment, setting
its bit count, and truncating it in that order. This provides for
maximal data being saved should there be a system failure between any
two lines. Common sense seems to indicate this order as "maximally
safe", and analysis of the data involved will demonstrate this as
well.

The input and output editing buffer areas are interchanged by these
three statements. Here is an example of localizing the use of pointer
variables to make clear that they are being used as escapes to allow
interchange of the meaning of PL/I identifiers.

The I/0 system provides this entry point to perform control operations
(e.g., "resetread") upon the objects represented by I/0 switches.

B-9 AG90-03



563

563, 566

580

589

590

This editor considers typed-in tab characters to be just as suitable
for token delimiters as are blanks. Ideally, tab characters would
never reach the editor, having been replaced by blanks by the typewriter
input routines. Such complete canonicalization of the input stream
would result in some greater simplicity, but would require a more
sophisticated strategy to handle editing of text typed in columns.

The PL/I search and verify builtins, which are quite wuseful in
circumstances like this (parsing lines), are compiled into very efficient
single-instruction hardware operations by the Multics PL/I compiler.

The cv_dec_ library routine is used here rather than a PL/I language
feature, because cv_dec_ will always return a value, even if the number
to be converted is ill-formed (in which case it returns zero). Thus,
the editor chooses not to handle ill-formed numbers. Had it wished to
check for them, it could have used the cv_dec_check_ subroutine. PL/I
language conversion would cause an error signal which must be caught
and interpreted lest PL/I's runtime diagnostic appear on the user's
console. Thus, eds retains complete control over the error comments
and messages which will be presented to the user. Such control is
essential if one is to construct a well-engineered interface which
uses consistent and relevant error messages.

The cleanup procedure calls the release_temp_segments_ subroutine to
release the temporary segments acquired earlier. A binary zero is
passed to release_temp segments_ by value (by enclosing it in parentheses)
because the cleanup handler has no use for an error code. Cleanup
procedures should never print messages, even error messages, because
they are only invoked when exiting a procedure. There is no corrective
action the user can take.

If the segment edited was not known before editing it, it should be
unknown after the editor finishes as well. The supervisor maintains a
reference count for each segment in the process. This count is incremented
by the call to hes_$initiate and decremented by the call to
hes $terminate noname.  If the count goes to zero (i.e. the segment

was made known by the editor), then the segment is made unknown.

B-10 AG90-03



N

21

54

fotinns:

/¥

Agelpre
declare
“eclare
declare
declare
Aeclare
Aeelars

declare
“eciare
~aciare
deeclare
Aeciare
denlara
denlara
declare

declare
Adeaclare
ceclare
Aecjare
Aeclare
“eclars
Aaclare
cdeclare
deniare
dgrlare
declarea
declare
Aeclare
derjars
Aaelare
decliare
Aecjiare
declare
Ae~l2re
declare

declare
declare
Adeclare
feclare

darlare

Gt 1 [RTTLG OF X

-
A

3 els
?L/

'
1 {amniler of Thursday,

pvi Eryparisents? Fenruarv 26, 1981 at 18:23
at: mnnsywal] LIL™ Phoenix, Systsr ¥
en: QA/1/8Y 1A41,1 agt Ton

ontimize mar

crocedure ortions (variauled;

Simple text ecitmp == examnia nrogram %/

“pitter July, 197y, hy 3omacnre U. Ynow %/

tgdifieg mays 1921, for “RQ,0 suhroutines, pv Someone Else %/

internal varishie dgelapations., =/
arg_cAunt ¢ived binary? /x Number of command line arguments */
araak chapacter (1); /% Holds break char for change %/
orat fived hinary?
ouffer character (216); /% Typewpiter input buffer, */
changes_oecurre-d “it (1)
ceza fixaed binary (35);

(adar (puffer))d;
/% Valid oortion of buffer */

conmanas character (count) hased

caunt fived Binary (21); /x Valid length of data in "buffer " %/
cejre ¢ived Rimarv (?1);

edet fi1xad hinary;

din_nare character (168); /% Directory containing segment */
entry_name character (32)?

exopte
from_rtre
from_sea

,‘] ov s

lire

lire _rLftar
lipei
Incatas

q

A

srame

sranme 1tk
srame_ptr
shurce_count
snurce _nDtr
sauyrce_sen

temn_sens
ttin

t¥n
to_sern

At
< rtr

/% fonstants */

nointer;
nointer;
cnapacter

/* Temporary pointer holdep, */
/% Pointer to current from_seo, */

(1145576) hased (from_ptr)}

/%
nit 01)5
fixed Hinary
fixed hinary
fived Rirary
hingry
kirary
hirary
binary

(713
(?1)¢
(”1);
21
(21);
(”1);
(?1);

fixe~
‘ixen
fixed
fived

Editina is from this segment., *x/

~haracter (1inel) hased (addr (line_buffer)):

enaracter (210); /%
fived Birary?
fixed Simary?®
fixed ninmary (?1);
Fixarn rimary (2133
cnaracter fsmame_l+th) hased f(sname_ptr)j
fFived hinary (2133 /%
~ointer; 7%
fived hirary (24} /%
rointer; /%
character ((%48576) “ased

/x
Airermsior (2) painter;
enaracter (2310); /%
chapacter (£33 /%

craracter (1i04°570) hased
/%

npinter:? /*

Holds line currently being edited, */

/% lenath of "line® %/

/* Source name */

Length of source segment name, %/
Pointer to source segment name, */
Holds seament bit length., */
Pointer to source sea, */

(source_ptr)?

Nutside seament for read or write, */

Ryffer to hold outout of change, */
Holds mext jtem on typed line %/

(ta_ntrd)?

Editina is to this segment, */
Painter to to_seq. *x/

AG90-03



SS
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75

77
78
79
8o
81
82
83
84q
8%
86
87
88
89
90
91
.92
93
94

deciare HNL character (1) static ootions (constant) initiel ("
")
declare wHITESPACF chapacter (3) static ontions (econstent) inftial ("
"Y; /* ML TAB SPACE x/
declare MYNANE character (3) static ootions (constant) inftial ("eds™);
/% external subroutine declaretions, =/
declare com_err_ entprv options fvapriable)?
declare cu_%arg_count entpy (fixed binary, fixed binary (35));
declare cu_%arg_ptr entpry (fixed tinary, pointer, fixed binary (21), fixed binapy (35));
declare cv_dec_ entry (character (*)) retyrns (fixed binarv(35)):
declare expand_pathname_ entrvy fcharacter (%), character (%), character (%), fixed hinary (35));
declere get_temp_seaments_ entry (character (*), vointer dimension (%), fixed pinary (35));
declare hes_Sinitiate.count entry (character (*), character (%), character (*), fixed binary (24),
fixed bhinary, nointer, fixed binary (35));
declare hcs_3¥make_seg entry (character (*), character (%), charactep (%),
fixed bir (5), ptr, fixed hinary (35))¢
declare hecs_Sset_bhc_seg entry (poainter, fixed hinary (24), fixed binary(35)):
declare hes_Sterminate_norare entpry (cointer, fixed hinary (35))2
declare hes_%truncate_seg entpy (pointer, fixed binary (19), fixed binarv(35))s
declare joa_ entry ootinns (variahle)s
declare jox_3%control entrv (pointer, cnaracter (x), pojntep, fixed binmary (35)):
declare iox_Saet_line entry fpointer, pointer, fixed binary (21), fixed bimary (21), fixed binary
declare jox_Sout_chars entry (pointer, oointer, fixac binsry (21}, fixed bimary (35)):
declare pathname_ entrv (character (*), character (x)) peturns (character (168))7
declare release_temo_seacments_ entery (character (*), oointer dimension (%), fixed binary (35));
declare clesnup condition?
declare (addr, divide, ¥ndey, lenath, nuil, reverse, search, subhstr, verify)
huilting
/% Fxterne] data %/
declere (iox_Suser_outout, jox_%Suser_input) rointer external static;
rdeclare error_table_Sroaro fixed binary (35) external statijc;
declare error_table_Snoentry fixed binary (35) external static;
declare error_teble_Ston_rany_args fixed Himary (35) external static;

B-12 AG90-03

(35))



35
36
$T
98
9Q
107
101
107
163
194
128
106
197
107
109
110
111
112
112
118
11%
114
117
112
11¢
120
121
122
1272
124
128
12
127
dgﬁ
12¢
130
131
132
- 133
34
138
13¢

PR NN R AM */

/% {recx te see if ar inout arcument wAas civen x/

call cu_%arg_count (aro_count, code);

it cous %= ( then do* /x Not called as a command */
call com_err_ (code, MiMA¥E);
return;
enc;
if ara_count = i ther code = (@ /x This is correct x/
else if aro_ccunt = 0 then cose = error_table_Snoarg? /x Arpqument is mjssing */
elea coge = error_tzhje Ttno_many_arcs? /* Utherwise, there were too many */
if cous "z 0 then det? /* 1f not called correctly, complain %/
call cor_err_ (codes MrlalE, "A/Usaner”="a <PATH>", MYNAWMF);
rRLURP;
end;

call cu_*% ipte (1, srare_ntr, snane_lth, (0));

if cnde %= ( ther dct
call ecom_err_ (ceode, Y*uME, "Usaocer: "a <P4TH>", MYMAME);
retunrn;

end;

vew GPT 3 pointer tn tne seament to ve edited x/

call expand _rathrmare_ fsname, dir_name, entry_name, code);

if code *= 0 then do* /% Bad pathname */
call ecor_err_ (code, "(®AME, "%a", snanme):
return;

and;

uc a clearupr hen“ler jm case the oroaram is aborted */

source_ptr = null ()r
teru_segs (xY = nylil ()5 /% dMake sure nandler has valid data =/
on conditisan (clearuo) cail clean_up?

137 /x [mitiate the sgurce seumert, */

138
13¢
1an
141
142
143
144
1437
144
147
148
14@
150
151
152
152
15¢

call nes_wninitiate_count (dir_nawe, entrv_name, "", gsource_count, 0, source_otr, code)?}
/% Initiate the seoment %/
if saurca_ntr = ny 11 O
them if ceoce *z= errar_tacle_3%roentry then dei/*x Problem or Just new seg? */
call cenm_err_ (cage, iiYWBNF, "fannot access "a", oathname_ (dir_name;, entpy_namel)}
return?
erq:

vy suffer seauents., */

call gyet_tenm_serments_ (-YL,8MF, temo_secs, code);

if choe “z § ther gt
call com_err_ (eorer, "1tA¥E, "Cannot oet temporsry seaments.")}
call ¢clear_un?
retuprn;

en;

B-13 AG90-03



155 ‘pam_ptr = temrn_secs (1J°%

154 ro_wtr = temo_cecs (2)3

157

158 /% (Check t~ see that the segTmert ie trere */

169

100 esize, ingf, inot = 0 /% Imitialize buffer control vars, */
161 if source_rtr = null then cdo?

162 call ioa. ("Segment ~2a not found.,", entry_namel}

163 g0 to oDinout;

1od an-y

165 esize © Adivide (source_countr Y, clr )i /% change hit count to char count */
15+ s hstr (frem_seq, 1, coize) = suhstr (source_segr 1, csizel);

107 /% Mgve source segment into buffer. */
1oR

10 /% ain e ditirg 1000 o o o o « X/

170

171

172 redirg

172 e31) dns,. ("Toir.");

174 revt:

178 fall rox_%aet_lire (ioy_Tuser_inou+, adar (wuffer), Tength (huffer), count, codel}
174 if coae *z= § thenr rg?

177 call eam_orr_ (cudes M1 n"E, "Ereor reading input 1ine™);

1TR 3n to finist,

17¢e and;

140 if coung = | then 0o tn rext:? /% {f null line then get another }ine, don’t orint error x/
131 ezet = 1° /% Set up counter to scan this line. */
187 ca'l gat_toxen: /x Tgentify next token, */

157

1an if tkmn = "i" tker ro te insert?

1RT it tbn = "rY trem oo (A retyne?

138 $f tep = *1" them ~p to locate’

17 if tem = "p" ther mo ta orint;

18R if ten = "R" ther Ao to mexiing

160 if tvn = “save' then go to file:

190 if tvn = "c" ther 00 TA fnanne’

191 if tin o= "A" thern ng te delidin:

192 if tun "wh" trer ~n In wsaAve;

197 if ten = "t" ther 70 to tord

164 if ten = "W" then no te hottom:

193 if thm = "." ther co to Dirput?

124

157 /% Tf nane af the a~ove then mnt a renuest */

19"

132 call ima_ ("°*a® Lot am eqit Heguest", substr f(commands, 1, length (commands) = 1));}
2060 eall resatreaar

261 T0 tn nevt’d

P02

PR /x oxdkkrFxkk irDUL mAne FxkxFxkxr */

204

2V% rirnuees

2u4 call ima_ "Tnout, "): /% print word input */

297 innyt:

9% ca'l inx_soet_lire (fov_%user_input, addr (ouffer), length (buffer), count, code)}
ru9 if cece "= y ther “of

210 call eom_eprr_ {ecAdes MMAME, "Erpor reading input=mode line.")}

211 40 to finisks

21?2 ends;

213

214 $f sunstr fcommancs, is ') = "." & count = 2

B-14 AG90-03



21% them ~o tna medjt; /* check for mode change */
216 call puts

217 Tinel = length (romrands);
218 lire = commanas; /% move line inputted {nto intermediate storage %/
219 cg ta inmut, /% repeat “til "," x/
229
221
P27 /k xkxkx*bREKx (e imta KkxEkxkxTxt +/
223
2L Aellin:
2e5 catl get_nuni
EFIS g 1 S 1 tenr = 1; /x do for each line to be deleted */
227 call aet;
228 an~;
2z0 1imel = 6; /% nullify last line =/
230 a3 tn next:
231
232 /% mikxkxkrtx ingapt dxtxkmkak
233
238 insert:
23s 511 wut;? /% Add current 1ine to output segment */
2346 retyne: /% This is also the retype request, %/
237 Tinel = langth (co~mands) = ecct?
23% Time = substr fcowrancs, edct + 1) /* add replaced Time %/
2350 20 to next:
240
P31 /2 kxxxkrtxkik ragt dxkkkxkxd */
42
242 mevlin: call get_num?
P41 if n < 0 then 90 to hackup?!
due m, ] T jngf; /% save where vou are x/
246 call puts
247 da i = 1 to rj; /% once for mach nl *x/
248 if § >z e¢size then 70 tr n_eot; /% check for eof %/
g0 K = inaex (suhstr {(fres_sea, | + 1, csize = j), NL);
250 /% locate end of line »/
251 if b = 8 ther un; /* no nl (eof) print eof %/
257 ma_eof: if incf >z ceize then ao to eof;
253 Tirel = 7, /% set to no line x/
254 sukstr (to_seur indt + 1, csize = m) = substr (from_sea, m + 1, csize = m)}
25% /* move in top of file x/
254 indi = csizer
257 in?t = inct + esize = m; /*x set pointers *x/
258 00 tn ecf;
259 eng?
260 jo= o+ ke /% increment | by length of line x/
?01? an~i
267 indf = j: /* set pointers and move in too of file %/
263 Timel = ;
26l line = substr (fror_sea, j =~ x + 1, linel): /% put working line {n line %/
265 suhstr (tc_seqr indt + 1, indf = Jinel = m) = subhsgtr (from_seg, m + 1, indf = linel = m)}
766 /* fi1l rest of file x/
267 fndt = jrgt + indf « jipna] « m2
268 ag to Pext:
259
270 /% kkkd*aksrrs |NnCaALe *xkx*kA*k* *+/
>
27?2 lorate: if edct = Jengtrn (comaands) tnen go to bad_svntax; /* check for plain "] NL™ =/
273 azet T edcet + 1; /x  Skip delimiter, =x/
274 ! = ince: /% initialize nointers for jndex type search */

B-15 AG90-03



332
33%
334

m = indf;
n = ¢csize =~ indf?
call puts?
{f (csize = 0) | (n <= () tnen do;
call switeh:?
if i >0 thepn n = j = it
else n = 0;
my ] = 03
end;

i = index fsubstr (from_sea, indf + 1, n), substr (commands, edct, lenath (commands) = edct));

if i = 0 then do;

k = index (reverse fsupstr (from_sea, 1,

if bk *z 0 then k = Indf + i = k + 13}

/% if found then do */

indf + i), ML)

/% k = index of ML x/

j = index (substr {frem_sea, k + 1, csize = k), NL)?J /% find end of line */

if ] = 8 ther indf = csize;
elge indf = j t+ «x?

supstr (to_sea, jnat *+ 1, x = m) = suhstr (from_segy m+ 1, k = m);

linel = ingf = k;

ingt = indt + k = m?
1ine = substr (fram_seg, & + 1, 1inel);
ns=s17s

go to prirt?;
end;
call coov;
call switch;
oo to next’

Jk kkkkkkkkk DRiRt Kkkknkxrx *x/

orint:

orintl:

nrolinet

call get_nun’

if 1inel = 0 then do?
call foa. ("we lime.");
go to noline;

and;

/% move in top of file %/

/% put found line in line ¥/

/* print found line {f wanted ¥/

/% get next command */

/% print jndication of no lines %/

call iox_%out_ehars {iox_$user_output, addr (14me), length (line), code)s

if code "= 0 thenr ot

call com_err_ (codes '(MAME, "Prochlam ~riting editor outout");

go to finishk;
endj

nen=1;

if n =0 ther 20 to next?
call puts

call get?

ao to opintl:®

/% kkxkkdxdkx change kxExrkk ik */

chanoe: located = 0;
if count = 2 then do?
bad_syntax?

count = count = 1?
call fca_ ("Irprocer:
call resetread;

go to next;

~a", commands)?

end;
brkl = edct *+ 2;

" bpeak = substr (commands, eact + 1., 1)}

/x write the line %/

/x any mopra to be printed? %/

/% Stpip NL off "commands " */

/* Pijck up the defiMiting character., */

AG90-03



235
236
237

239
z40
241
LY
43
Tad
4%
344
247
4R
249
350
351
252
352
50
35%
356
257
358
159
260
361
202
363
30d
356%
266k
367
X
269
z7e
371
77
272
278
z27s
274
377
372
z7Q
339
331
52
153
k124
EE-0
23A
3a7
IjR
Z8¢
238
z91
29>
293
Iyi

nxarecg

cht:

ch?:

core?

sxinehe

= iprey (sub.ste
f 3 = ¢ then a0 ¢t
= index (substr
if ) = 0 then
egrt = edet + § ¢+
alobsy = "OMk;

n = {;

-

i =

call set_tekens

if tkn 2= " " then
if tkn = "g"
else call cv_
20 to nxara?

end;

if 1inel = { then

cnanaes_ocrurren =

iJe 1 = gt

if i = 1 ther Ao
chanues_oeccup
locatew = it
sunstr ftlin,

T

= j o+ linel
20 to ¢cnrt;

index fsunste

-~

if < ® then de;

supste (thin,
supster fttinm,
I A
il =i o+ ok
T 21 + « +
Charges_occ':
locateg = i
if alopsw tte

B TS A

and,
subster (t1in, 1.
AT I
L

Tangt: |

Temgtn (14

if changyes_occurre

feonmands, wrk1), kreak):
o had_syntax!?
{coumards, j

Temyth (ecommandg)

¥ prkli, breai):
-

[
gn;
then globsw = "j"n:

numg

e te skiueh?

HA‘VF;
re‘q - "1"0;

1, i = 1) = supstr (conmandgs,

jr lengtn (V1imed) = line;

Ve

+ 13

fline, »), sucstr (conamands, brkl, i
ity &« = 1) = syhstr (lirme, m,

ji ¢ e =1, j « 1) =

- c:

] o= cr

-2t
red = "Mt
~ 790 to ch?;
lTergtn {Vine) = r + 1) =
Tire) = =;

re) = m;

~ tnen uo,

substr (commands,

i = hrkl + 1

/% Continue scanning edit line, =%/
/* Agsume only one change, %/

/x Agesyme only one !ine changed. */
/x 1f token there, orocess {t, =%/
/* Change all occurrances, x/

/x  Try for another argument, %/

/* Skip changino empty line, =x/

/x indexes to strings %/

/% add to beginning of 1ine %/
brkl + &, j = 1);

/* copy part to he added x/
/* copy o1 line %/

- 1))

/x locate what is to be changed */
kK = 1);

/% copvy lime uo to change %/

bpkl + §, 1 = 1)}

in chanae x/

indexes %/

/* put
/% jncrement

/* indicate that you did someting */

supstr (line, m);

/% cooy rest of line x/

/% drite changes %/

call iox_%nut_.chars {fox_Tuser_outout, agdr (t1in), 1, code);

if core ~= N
call com
a2 ta fy

supstr ft1y

if n <= 1 thnen i1A:

if located =
count =

then un;
~erer_ (coze, #Y.8uF,
nyan?

ny 1, 1j);

N tnen de;
count = 1,

"Error writino change jine");

/% finished =/

/% Get rid of NL i "commands™" %/

AG90-03



395
396
397
398
399
100
a01
ag2
a03
204
405
406
a07
4gR
499
a10
411
a1?
a13
414
a1s
416
417
4R
419
020
a2
a2
423
aga
ags
426
427
428
azo
430
431
432
433
434
435
436
437
43R
439
440
841
ay2
ay3
444
a4s
a46
au7
448
L49
450
451
452
453
asa

call ina. ("Mothina changed by: *°
call resetread’

end;
Qo to next;
n -1

call put;

call get:

nao to chi;

Jh kkKkRFRkRX TOD kFkkxkxkkx %/

too: call copv;
call switch;
ao to next?
/% kkkkxkkdk bottom *rkkkrkik */

call copv;
linel = 13
ao to minputs’

bottom?

L
Ik kkkkkkkkk backyuo kxkkwxkik */

backup? i = indt?
call copvj}
call switch;
indf = § ¢+ 1:
do n = n to 0;
j = index (reverse (supstr (from_sea, |
if J ~= 0 then indf = indf = I;
else if n = 0 then indf = 0F
else do?
linel! = 0;
n=1;
indt, in~f = 0%
0o tn eof;
end:
end;
indt = {nd¥;
substr (to_segrs ', in0t) = substr (from_seca,

do indf = indt + 1 cy !
supstr (1ine, jngf =

to csize?

indts, 1) =

if suhstr (fron_seyr indf,
then ao to linme_ena?

end;

indf = csize?

17 = kL

line_end:
linel =
n = 1;
ao to ppintl?

indf = indt;

/% kkkkkkkkxk "fijle" reauyest kikkkkxkrkr *x/

file: call copv;

a",

substr ffrom_seay

commands);
/*x if mot located */

/% Yo VTine buffer ¥/

/% save ptrs x/

/% restore otrs */

/% Note that "n" stesrts negative,
indf = 1)), NL);

/% Firgt line case %/

/* want off ton of file »/

/% 1ine starts ss indt */

1r indt);

of file »/
1ine »/

/% move in top
/x find end of
ind¥, 1);
/* move fnto line */

/% search for end of line */

/x Finish copv. */

AG90-03

*/



cali save; /x  Save jt, */
fimjsine call clean_un; /x Terminate source and release temp segs */
retyrn; /% PReturn te command brocessgor */

Sk EEFRRARKk K xH write Save xkixdkkxkx® * /

usaye; call copv; /* Finish copvy. */
call save; /% Save jt., */
no to mext:? /x  Continue accepting requests, */

Jk xtxkkkFrarkx onf xkkkxkxhkk x/

aofy count T count = 1, /% Remove N x/
call ioa_ ("Fnd of Fila reached hysasagn, commands);
23l regetreacs
N0 to next:?

/x xkxxxkxkx ] L T R ¥ i a L DR TRSEC N UIDE 8§ kkhkkfkkkx %/

fcnyt pracegure; /* copv rest of file inte to file »/
substr (to_seg, indt + 1, lenath (lired)) = line;
/* Copy current line, */
indt = ynaot + lemgth (1ine);

line! = 0; /* No more line w/

if ceize = o

then return; /* 1f new input, then no copy needed, */
ij = ¢csize = ircf, /% do rest of file %/

if it o> on
then supstr fto_sec, inmat + 1, i1) = substr (from_sea, jndf + 1y 1))
indt = jnet + i /* set counters %/
inff = ¢csijzes

return?

end coovi

Save? rpacagure; /*x Procecure to write out all or part of "to" buffer, %/
if source_otr null then deot /% Must be a new segment x/
call hes_Sraxe_sen (Gir_name, entry_name, "", 01010b, source_ntr, code)}
if ccde *= 0 then unjg
call com_err_ fcoce, HYLL4F, Y"Fannot create “a", psthname_ (dir_name, entry_name)):
returny
end:?

%

endcy
substr (scurce_sear !, inrct) = suoste (to_sea, i, indt);
rall hes_sset_hc_sec (soupse_ptr, inct = 9+ code);
if code = 6
tnen call hes_Ttruncate_sea (source_str, givide (ingt + 3, 4, 19, 0), code);
it cnde "z { ther dg?
call cem_arr_ (code, " i"&4"E, "Lanmot truncate/set bit count (*d) on “a",
indt % %, matrname_ (uir_nace, ertry_name));
enr}
return?

enn save;

B-19 AG90-03



515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
534
539
540
541
542
543
544
£45
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

put:
procecdure?
suhstr (to_segs indt + 1, lerath
indt = indt + length (line);
Tirel

(line)

aet:
procedure;
Tinel = 0;
if indf >= csize then ao to ec¥i
1inel = index (substr ffrom_seaq,

if 1ine] = 0 thenr linel =
line = substr (from_sea,
indf = linel + ind¥;
return’

csize ~ indf;
ingf + 1,

end;?

switch®
orocedure?

exptr = from_ptr?
from_ptr = to_rtr;
to_ptr = exptr:?
cgize = indt:
indt, indf =
lirel = 0;
return;

0s

end switch;

resetread:
procedure;?

(iox_ovuser_input,
call cem_err_

call jox_%control
{f code *= 0 then
return?

(coae,

end resetread’?

cet_token:
procedure?

declare ftoken_lth, white_Yth) fixed oinary (2i)7

tkn =
white_lth =
if white_lth < (0 then return?

edet = edct + vhite Tth;

toren_l1th = search (substr (commands,

n ",
’

indf + 1,

edet),

) = linej

linel);

"resetread”,
"Camnat resetread user_input");

MYivA9E,

csize

/% do move %/
/* set counters */

/% Discaprd old line, */

/* Reset current line length, */
/*
- indfl}, NL);
/% Find the next new line, %/
/* 1f no nl found, treat end of segment as one,
/* Return the line to caller, */

/% Mgve the "from" pointer ahead one line., x/

/x make from=file to file, and v.ve */

/x Call i/oc system reset read entry, *x/
/x In ane place to centralize error handling %/
null (), codel;

/% Set for easy failure »/

verify (suhbstr (commands, edet), NHITESPACE) = 1:

/% Unly whitesoace left */

AHITESPACF) = 132

if token_1th < 0 then token_ith = length (commands)= edet; -

tkn = substr (commands., edCtr
edet = edct + rtoken_lth;

returni

end get_token?’

token_1th)3

B-20

/*x Extract token */

AG90-03

If no inout Yeft, aive up,

*/



TR aet_ryr:

76 pronedyure?’ /% Routine to convert token te bimary jntegepr, =/
k4 call get_toxken: /% Delimjt the token, %/

72 ev_nume

7 entry? /x Enter here if token already avajlable, */

5n = ev_dec_ ftkn); /* Convert {t, «/

31 if n = § then n = ¢ /*x Default count is |, %/

32 ratiurn?t

8.

54 ena get_nuir?

3%

86 rleaan_up:

37 procedyrer

ar

8° cail! release_temn_seaments_ (MrYaMe, temp_segs, (0));

gn if sourca_ntr "= nyl] then rali hes_idterminate_noname (source_ptr, (0))3

31

92 ens clean_un;

9

Y& enz edsg?

B-21 AG90-03



SQURCE FTYLFS USED Tn THIS CuMPILATIUN,

LINE MUMBER PATE MODIFIEDR MEHE PATHNAME
0 06/01/81 1643,1 ecs.oil >udo>Pubs>userd>AG90=02>eds,ol1

B-22 AG90-03



NAMES DE%LARFD IN THIS COMPILATINN,

IDENTIFIER

Log

NAMES DECLARFD BY DECLARE STATEMENT,

MYNAME

NL
WHITESPACE
addr

arg.count
break
brkl
buffer

~hances_occurred
ranup
ie

com_err_

commands

count

csize

cu_dara_count
cu_Sara_ptr
cv_dec_
dir_name

divide
edet

entry_name

error_tahle_Snoarg
efror_table_Snoentry
error_table_Stoo_many_args

expand_pathname._
expote
from_ptr

ogegng

004102
LELILYY

006100
npeyeg
0pa102
0en1n3

nQN170
000472
fonL7Y

000610

0nonL7e

000173

f00012
00NG1E
000016
900175

000174
090247

0000Se
000660
000062
0000290
000269
000262

STUPAGE CLASS

constant

constant
constant

autematic
automatic
avtomatic
automatic

automatic
stack reference
automatic

constant

baseg

automatic

automatic

constant
constant
constant
autematic

automatic
autoratic

external static
external static
external static
censtant
automatic
autamatic

CATA TYPE

char(3)

char (1)
char(3)
builtin function

fixed bin(17,0)
char(1)

fixed bin(17,0)
char(210)

bitf1)
condition
fixed pin(3S,0)

entry

char

fixed bin(21,0)

fixedg bin(21,0)

entry
entery
entry
char(168)

builtin funetion
fixed bin(17,0)

char(32)

fixed bin(35,0)
fixed bin(€35,0)
fixed bin(28,0)
entry

cointer

pointer

ATTRIBUTES AND REFERENCES
(x indicates a set context)

initial unaligned dc! 60 set ref 104% 113%x 1134 119«
119% 127* 143x 189% 151% 177* 210% 313% 385% 498%
507% 552% 589«

initial unaligned dc1 56 ref 249 286 288 427 443 528

initial unaligned dec1 58 ref 563 566

dcl 85 ref 174 174 199 199 199 199 207 207 214 217
218 218 236 238 238 264 272 284 284 295 311 311
311 311 311 311 329 334 335 337 338 356 358 358
363 363 366 368 377 377 379 380 383 383 390 395
341 468 478 478 480 517 517 518 531 563 S6b6 567
K68

dcl 9 set ref 102x 108 109

unaligned dcl 10 set ref 334* 335 337

del 11 set ref 333% 335 337 338 356 363 368

unaligned dc! 12 set ref 174 174 174 174 199 199 199
199 207 207 207 207 214 217 218 236 238 272 284
284 329 334 335 337 338 356 363 36R 395 4468 363
564 567 S68

unaligned dcl 13 set ref 351i% 354% 373% 381

del R4 pref 135

dc1 14 set ref 102% 103 104% 108% 109x 110% 112 113
118 119% 125% 126 127* 139% 141 143% 149% 150 151
178% 176 177% 207% 209 210* 31ix 312 313+ 383* 384
385% 496% 497 498x S503*% 504 504% 504 S07% 551% 552
552x%

external del 64 ref 104 113 119 127 143 151 177 210
313 385 898 507 552

unaligned dcl 15 set ref 199 199 199 199 214 217 218
236 238 272 284 284 329 334 335 337 338 356 363
368 395% 468% 563 566 567 568

dcl 17 set ref 174% 180 199 199 199 199 207x 214 214
217 218 236 238 272 284 284 326 327x 327 329 329
334 335 337 338 356 363 368 394 394 395 395 467%
467 868 468 563 566 567 568

del 18 set ref 160% 165* 166 166 248 249 252 254 254
254 257 276 278 288 289 440 446 482 484 ag8 527
528 530 541w

external del 65 ref 102

externsl decl 66 ref 117

external del 67 ref 580

unaligned del 20 set ref 125% 139% 143% 143%x 496
498%x 498% 507% S07=

dc1 85 ref 165 S04 504

Ac) 19 set ref 181% 236 238 272 273x 273 284 284 333
334 339% 339 563 S545*% 565 566 567 568 569% 569

unaligned dcl 21 set pef 125% 139% 143% 143 162%
496% 498*% 498x S507% S0T7%

dcl 91 ref 109

dcl 92 ref 141

del 93 ref 110

external decl 68 ref 125

dcl 22 set ref 538% 540

del 23 get ref 155+ 166 249 254 264 265 284 286 288
291 295 427 438 441 443 485 528 531 538 539

AG90-03



from_sey

aet_temyi_segrents_

alobsw

hes_Sinitiate_ecount

hes_Tmake_sece
hes_Sset_tc_ser

hes_fterminate_nonase

hes_“truncate_sen
i
i

index
indf

indt

ioa_
iox_Scontral
for_“cet_line
jox_Tcut_chkars
iox_Suser_inng+
jox_%user_ocutocut

1

lergotn

line

Tine_tuffer

Tinel

locater ”
-

null
mathmame

release_temru_senrents_

reversa
search

0gnyPe
agn2éa
ApNGRG
ANgle
MAYTG
MG Gle
NGNG34
0Yrzes

LELETN

nangay

007y

0nr03g
[LED)
agngng
ROV
nyN0Se
0pNySe
nyneTy

ngneTe

POrETA

NpneTu

RORELS

AG03kRe

rON3E3

1G03hky

TS
funusg

basag

constant
autnmatic
cnnstant
canstant
constant
constant
constant
automatic

autopatic

autematic

auteratic

crnstant
coenstant
canstant
constan®
erternal! static
erternal static
autonatic

autoratic

auteratic

vAaseg

autemnatic

automatic

autematic

autamatic

autematic

censtant
constant

char(1048576)

entry
bit (1)
entry
entry
entry
entry
entry
fixed bin(21,0)

fixeg pin(21,0)

builtin function
fixed bin(21,0)

fixed bin(21,0)

entry

entry

entry

entry

vointer

ceinter

tixed bin(21,0)

fixed bin(21,0)

fixed binf21,0)

vuiltin funetion

char

char(210)

fixed bin(17,0)

fixed bin(17,0)

fixed pin(21,0)

tixed pin(21,7)

builtin function
entry
entry
builtin function
puiltin funetionr

unaligned dcl 24 set ref 166% 249 254 264 265 284
286 2B8 291 295 427 038 441 443 485 528 53¢

external del 69 ref 149

unaligned dcl 26 set ref 340% 345% 375

external decl 70 ref 139

external del 72 ref 496

external decl 74 ref 503

external del 75 ref 590

external del 76 ref 504

del 27 set pref 226% 247x 2R4x 285 286 287 335% 336
337 338 339 353 356 363 368 370 422% 425 -

dcl 2B set pef 352% 359x 366 368 3ITix 371 377 379»
379 389 390 484x 4BS 485 485 487

decl B5 ref 249 2R4 2R6 288 335 337 363 427 528

decl 29 set ref 160% 245 252 256% 262% 265 265 267
275 276 284 28k 287 289% 29Q% 293 825% 427 428w
428 429% 433% U437 A40% 441 441 4O43% L46% 447 484
485 4BRx 527 528 528 530 531 532« 532 S42«

dcl 30 set ref 140% 254 257x 257 265 267% 267 274
291 294* 294 422 433 43T+ 438 438 440 441 447 478
480% 480 485 4A7x 4BT 502 S02 503 504 504 S07 517
Si{R%x 518 541 542*

externsl del 77 ref 162 172 199 205 307 329 395 468

external del 78 ref 551

sxternal dcl 79 ref 174 207

externs] dci 80 ref 311 383

de) 90 set ref 174% 207x SSix

dcl 90 set pef 311% 383x

del 31 set pef 245% 248 249 249 260x 260 262 264
274% 280 2R0 2R2» 28Rx 2B9 290 337+ 338 338x 339
356 356 358 359 360 368 368 371 372 827x 428 428

del 32 set ref 209+% 251 260 263 264 286% 287 287«
287 288 288 290 291 291 293 294 295 363x 365 366
366 368 370 371 372

dcl 33 set ref 352+% 3460x 372% 372 380% 380 383%

del RS ref 174 {74 199 199 207 207 217 236 272 284
T11 311 33R 3SR 377 379 380 4TR 48O 517 Sia Ss67

unaligned dcl! 34 set pef 218* 238x% 264* 295x 311 311
311 311 358 358 363 366 377 377 IT9 380 390% 4431w
478 47R 480 S17 517 518 531w

unsligned dcl 35 set pref 218 238 264 295 311 311 31}
311 358 358 36% 366 37T 377 379 380 390 44! 478
478 480 517 S17 Si8 S31

dcl 36 set ref 217% 218 229% 236% 238 253x 263% 264
264 265 265 267 293x 295 295 306 311 31y 311 311}
349 358 ISR 359 3460 363 366 377 377 379 380 3I89%
390 41Tx 4Tix 4491 447w 478 478 480 481x S17 517
518 519% 526% 528% 530 530% 531 531 532 S43x

dcl 37 set ref 325% 355% 374* 393

del 38 set ref 2US% 254 254 254 257 265 265 265 267
275% 282+« 291 291 291 294 352x 363 366 370% 370
377 377 379 380

decl 39 set pef 226 244 247 276x 278 280x 281% 284
2946% 317+ 317 318 T41x 392 401x 401 8426 426% 429
432% 449x 580% 581 S81*

dcl AS ref 133 134 141 161 495 551 551 590

external del 81 ref 143 143 498 498 S507 So7

sxternal del 82 ref 589

decl RS ref 286 427

decl 85 ref S66

AG90-03



sname
sname_1th 0ON345
sname_ptr 000366
source_count 66037¢
source_ptr 060372
source_seg
substre
temp_segs 000374
tkn 20NUke
tiin nongag
to_ptr 900479
to_seg
token_1th 0060556
terify
vhite_lth Y0587
JMES DECLARED BY FXPLTCTT COKTEXT,
ackup 202474
>ad_syntax 201775
ottom 002471
thi nor1z¢
th2 np22n3
thange 001771
:lean_up nNG3433
iopy NOP650
PPt 092345
vonum 003406
lel1in 0013481
ds 0002320
of 002621
ile Ng2607
inish 002611
et 003172
et_num 0034n3
et_token 003324
nout 191251
nsert 01357
ine_end 202601
ocate 00152
_eof n01432
exlin 001373
ext 001020
oline 001762
Xarg 002114
edit 0Q10ns
input f0o12%o
rint 091673
rintt fot712
Jt 003157
rsetread nQz2up

pased

automati¢
auteamatic
automatic
avtomatic

odsay

automatic
automnatic

automatic
autematic
paseo

automatic

automatic

constant
constant
constant
constant
constant
constant
censtant
constant
constant
censtant
constant
constant
canstant
constant
constant
constant
constant
constant
constant
constant
constant
censtant
constant
constant
cnnstant

constant
constant
constant
constant
constant
constant
constant
constant

char

fixed binc21,0)
sointer

fixed bin(24,0)
cointepr

char(1048576)
puiltin function

pointer
char(®)

char(210)
pointer
char(1048574)

fixed oin(21,0)
builtin funetion
fixed bin(21,0)

1abel
lavel
laone]
lapej
lape]
labe]
entry
entry
lave)
entpry
lape]
entery
label
label
lapel
entry
entry
entry
laoel
lave]
labe}
labe)
iabe)
lape]
label

labae}
lape]
lape]
tavel]
1ave}
1abe]
entry
entry

unaligned dcl 40 get ref 125% 127x

del 41 set ref 117+ 125 125 127 127

del 42 set pef 117+ 125 127

dcl 43 get ref 139% 165

dcl 44 set ref 133% 139% 141 161 166 495 496% 502
503%x S04x 590 S60x%

unaligned de1 45 set ref 166 502%

dcl 85 set ref 166% 166 199 169 214 238 249 254% 254
268 265% 265 2R4 2R84 286 288 291% 291 295 334 335
337 356% 356 358% 363 363 366% 366 368% 368 377x
377 390 427 438x 438 441% 441 443 478% 485% 485
502% 502 517% 528 531 543 566 568

array dcl 47 get ref 134% 149% 155 156 589%

unaligned dc! 49 set ref 184 185 186 187 188 189 199
191 192 193 194 195 344 345 562% 568+ 580%

unsligned del 48 set ref 356% 358%x 366% 3pAx 377
383 383 390

del 52 set ref 156% 254 265 291 438 478 485 s02 s17
539 540%

unaligned dcl S0 set ref 254% 265% 291% A38% 478%
485% 502 S17%

dcl 560 set ref S66% 567 567* 568 569

dcl 85 ref 563

dcl 560 set ref 563% 564 565

del 8422 pref 244

del 327 ref 272 336

del 416 ref 194

del 351 ref 404

del 363 ref 375

det 325 ref 190

internsl dc] 586 ref 135 152 456

internal dcl 477 petf 299 410 416 423 454 461

del 381 ref 361

internal del S78 ref 346

dcl 224 ref 191

axternal del 1

dcl 467 ref 252 258 434 527

dcl 454 ref 189

del 456 ref 178 211 314 386

internal del 524 ref 227 320 403

fnternal del S75 ref 224 243 305

internal dcl S57 pef 182 322 577

del 207 ref 219

del 234 ref 184

del a47 ref 443

del 272 ref 186

dcl 252 pref 248

dcl 243 ref 188

del 174 ref 180 201 230 239 268 301 318 331 399 412
463 470

del 317 ref 308

decl 342 ref 347

del 172 ref 214

decl 205 ref 163 195 418

del1 305 ref 187

dcl 311 ref 297 321 450

internal dcl 515 ref 216 234 246 277 319 402

internal del 548 ref 200 330 397 469

AG90-03



retyre NG13A0 constant jabel
save "327%6 constant entry
skipeh nOP422 constant Tabel
switen PQ3£25 constant entry
ton AQ24ab5 coanstant label
wsave 20261¢ constant lape]
THERT WEFr o0 Ma¥e S PErpLARTL uwY¥ NUBTFAT TR [YRLINATING,
STARAGE PECUTRFAF TS Frx THIS PrfuRit,

Tytent Tert Linik Symoai Nefs
Stapr* b} b (R TN 245y 1103
lLength HETRA RS T ~y 214 2h1
PLACK MAME STAMK 8T(LF TYPE
sas Au? external procedure
on unit ar jine 137 &t Aan unit
cony internal vrocedure
save internai procedure
nut intenrnal orocedure
aet internaj procedure
switech internal prccecdure
resetrear in*ernal procecure
set_tover internaj orocedure
net_numr intgrnail proceture
clean_uv 50 internal procerure
STORALF U ALT W ATIr Yad[i eSS,

QTA‘;V Fad. &
e L]

100
10p1yh
vNytet
HEI A B R
PAIVARO
unNp17a
"MOANE
210172
unr9173
BLEANAS
VAR I A
wau2s7
vt ?e”
Uthi®n?
b EL
Vraves
TR
0267
203270
LAV A
370272
$NgRIR
ane> 14
0r 0301
032
§093HT
PRUAY-X]
PRERT-A
PRV
0nor79

TLEILTIFIT<
aro_count
hreak

hpkl

hyffer
rhanmes_ocrurrea
coe

count

rsize

edet
dir_rame
antry_nare
expte
fpnu_ptr
clarsw

i

i}

indf

inAt

i

13

1
line_buffer
Tinel
lorcated

-

"

snane_lth
Sname_rtr
source_count

Static
437y
0

decl 236 ref 185
internal decl 494 ref
del 392 ref 349
fnternal del 536 ref
dcl 410 ref 193
decl 461 set ref 192

WY MONGUICK/WHO SHARES STACK FRAME
is an external procedure,

shares
shares
shares
shares
shares
shares
shares
shares

stack
stack
stack
stack
stack
stack
stack
stazk

is called hy

ALNCK NAME

ads
eqs
e9Qs
IQ§
ade
eds
age
eds
eds
eqs
eJds
eds
ag3s
eJys
age
ags
20s
egs
eds
eus
eds
eJs
eds
20%
eJds
eds
ads
eds
eds

B-26

frame
frame
frame
frame
frame
frame
frame
frame

several nonquick procedures,

external
axternal
external
external
axternal
external
external

of =xterns)

procedure
procedure
procedure
procedure
procedure
procedure
procedure

mnEmasadiina
=rSTsoure

AG90-03

455 462
279 300 411 4z

eds,
eds,
eds,
eds,
eds,
eds,
eds,

ads
-1ed- XY



000372 source_ptr
000374 temp_segs
000402 tlin
000866 tkn

000470 to_ptr
G0gR56 token_1th
000557 white_ Ttk

THE FOLLOWING FXTERNAL JPERPATORS APE USENR Ry THIS PROGRAM,
slloc_cs cali_ext_out_desc call_ext_out
enable shorten_stack ext_entry

THE FOLLOWING EXTEPNAL ENTRIFS ARk CALLED RY THIS 220gRa,

com_epr_ cu_waro_count
expand_pathname_ get_temp_segments_
hecs _Sset_be_sea hcs_Stepminate_noname
{ox.%contro] io¥_Tget_line

release_temp_segrents_

THE FOLLOWING FXTERNAL YARTARLFS APE USED RY THiS PROuRaM,
error_table_%noarg error_table_S%noentry
fox_Suser_output

LINE Lnc LIME Loc LTk® Lng LINE
1 000227 102 000235 103 290245 1%
110 0003090 112 070303 1132 140305 114
120 00041y 125 00p4L2 126 9u04lg 177
135 000514 129 000534 141 00pnRaNgG 143
151 000706 152 000732 153 0G07 %6 155
162 000752 163 000775 165 0770 160
177 001045 178 001074 131 201375 184
186 001115 1R7 001122 188 001127 1”9
193 001169 194 001165 165 0G117¢ 129
207 001251 209 001274 210 n0127s 211
218 001335 219 001349 224 00134y 226
230 00135 234 001357 ?5h DU1560 238
245 001375 246 001491 247 0gla0 248
2532 001435 254 091436 256 Bul4R3 257
26?2 0014k4 263 001464 Pelt AQ14Ty k5
273 01524 274 001525 275 161527 2760
280 001542 2R1 001547 282 201559 284
28R 001613 289 001627 290 031638 291
296 001065 2°7 001467 269 n0167 306
307 001676 305 001711 211 60171 312
318 001764 319 001764 320 001747 321
329 091777 320 002025 231 0020”6 333
337 002056 318 (02076 339 00P194 34y
345 002122 346 002132 247 002133 349
354 002i8s 355 002159 356 00215¢ 358
362 002273 365 002227 366 "0223¢ 368
373 002304 374 002306 275 060?310 377
283 nQ23u7 324 002364 LS 00237y 3%%
392 002425 324 002427 395 002aiy 397
203 002464 4ny 002465 4in nQRaky 411
a1R 002473 4722 002474 423 00247p 424
228 002524 429 002530 431 602534 422
437 002544 478 (02RL4 440 02553 4ay

eds
eds
aqgs
ays
ags
cet _token
aet token

call_int_th
int __entey

ey _Saro_pte

is

call_int_other
set_cs_efis

hcs_%initiate_count
hes_ftruncate_sea

iox _%out_ch

error_table_Stoo_manv_aras

Lac
000247
PMPEETH
90GAaALA
061N
000737
0n10n01
001100
001134
un1177
001%e?
001342
0n13%62
gt1411
or143s
901477
0N153
0Niss2
0n1A35
0N1ATY
001732
001770
002027
902111
gnz134
Q02166
0Nz244
00g212
gngaja
gn24s57
§n24L67
anza77
0n2R3s
072563

ars

LINE
108
117
128
144
156
172
182
190
200
214
227
239
249
258
267
277
285
293
301
313
325
334
341
351
359
370
379
389
399
a12
425
433
443

Lnc
000264
000335
000476
000662
000741
001005
001102
001141
001233
001323
nN01382
001372
001414
001460
001514
001534
001571
001651
001672
001735
001771
002032
002112
002136
002173
002265
002335
002415
002460
0024790
007500
002537
002571

cv_
hes_%make_seg

dec

foa_
pathname_

iox_Suser_input

LINE
108
118
133
149
160
174
184
191
203
216
228
243
251
260
268
278
286
294
305
314
326
335
342
352
360
37
380
390
401
416
426
434
445

LoC
000265
000355
000477
000663
000743
001020
001103
001144
005235
001332
001353
001373
001431
001461
001520
001535
001572
001654
001673
001761
001772
002037
002114
002137
002177
002272
002341
002417
002461
002471
002503
002541
002575

AG90-03

return
index_cs_eis

LINE
109
119
134
150
161
176
185
192
20s
217
229
244
252
261
272
279
287
295
306
317
327
336
344
353
361
372
381
392
402
417
427
436
446

LoC
000272
000357
000501
000704
000746
001043
001110
001153
001236
001333
001355
001374
001432
001462
001521
001541
001606
001660
001674
001762
001775
002055
002115
002143
002202
002277
002345
002422
002463
002472
002507
002542
002577



a7
ag1
077
a7
agR
£19
S26
536
Syl
Rl
570
S6é

ro”e0y
nQ261e
roR6S¢
ng2701
nG27%4
nG31Re
033173
(03275
poz20yg
ngr3?7
nuRgng
003u2

409

75
w25
U2y
51>
527
513
544
575
5%3

gn260d
0n2hL7
002651
§0p703
an30e7
003157
0A3174
Qn3224
0N3242
UnzITgk
un34aL3
LY

a5n
g3
agn
4yo
=52
<17
seR

52000
192024
nyPoeR7
0y2765
20303y
NgRiby
377
fy3z3y
U RY-TE
ng33S¢
AgTiNa
AYTYhe

454

002607
002621
002hb1
002706
003036
0031656
gn21d
0n323>
003275
003353
Gn3405
093501

45%
463
ug2
495
504
519
531
541
553
567
580

202610
002623
002662
00277
003054
003170
003220
0032324
003323
003372
003407

456
469
484
496
S06
520
532
542
557
568
SAL

002611
002646
002665
002713
003075
003171
003223
003236
003324
003376
003426

AG90-03

457
470
485
497
507
524
533
543
562
569
582

002615
002647
002667
002752
003077
003172
003224
003240
003325
003401
003431



APPENDIX C

MULTICS SUBSYSTEMS

The Multies system offers many special ‘subsystems, designed to serve a
particular set of users or perform a particular set of tasks. Some of these
subsystems are already familiar to you--the Qedx and Emacs text editor systems,
the input/output system. Various other subsystems are described briefly here.
For detailed information on any of them, see individual manuals.

DATA BASE MANAGER

The Multies Data Base Manager (MDBM) supports the description and processing
of data bases of widely varying sizes and organizations, and provides a large
measure of data independence. It consists of an integrated set of functions
which offer a full range of data base retrieval and update capabilities, and it
is written to interface with any programming language that supports a call statement.
The MDBM offers a powerful, extremely flexible method of structuring and manipulating
data bases: the Multics Relational Data Store (MRDS).

MRDS supports the relational model of data base organization, in which data
relationships are represented by means of formal algebraic entities. It allows
you to structure and access data without concern for how or where it is actually
stored. A special MDBM query language called LINUS (described later in this
section) provides comprehensive query capabilities for MRDS data base users.

Data bases reside within the Multies storage system and are protected by
all of the security features inherent in the Multies virtual memory environment.

FAST

The Multics FAST subsystem is a simple-to-use, low-cost user interface for

creating and running BASIC and FORTRAN programs. The Multies FAST command language
is a subset of Multics commands with additional commands for manipulating
line-numbered text.

GCOS ENVIRONMENT SIMULATOR

The GCOS environment simulator, together with several Multics facilities,
permits GCOS batch-processing jobs to be run under the control of Multies and
provides some job-scheduling facilities. Invoked via the Multics gcos command,
the simulator immediately runs one GCOS job in your process. Your terminal is
treated as if it were the GCOS operator's console.

C-1 AG90-03



It's also possible to simulate GCOS time-sharing usage, by invoking the
Multics gcos_tss (gtss) command.

GRAPHICS

The Multics Graphics System provides a general purpose interface through
which user or application programs can create, edit, store, display, and animate
graphic material. It is a terminal-independent system, which means that a program
written for one type of graphic terminal is operable without modification on
another terminal having similar capabilities.

The Logical Inquiry and Update System (LINUS) is a facility for accessing
MRDS data bases. The complete data base management capability provided by LINUS
includes both retrieval and update operations.

LINUS makes use of a high-level nonprocedural language called LILA (LINUS
Language) that can be understood by individuals who aren't necessarily computer
specialists.

REPORT PROGRAM GENERATOR

The Multics Report Program Generator (MRPG) is a language translator used
to generate a PL/I source program from an MRPG source program, with the purpose
of generating formatted reports.

SORT/MERGE

The Sort/Merge subsystem provides generalized file sorting and merging
capabilities, specialized for execution by user-supplied parameters. Sort orders
an unranked file according to the values of one or more specified key fields in
the records you are using. Merge collates the contents of up to ten ordered
files according to the value of one or more key fields. Input and output files
associated with the Sort/Merge subsystem can have any file organization and be
on any storage medium. Records can be either fixed or variable length.

WORDPRO

The Multics word processing system, WORDPRO, consists of a set of commands
that assist you in the input, update, and maintenance of documents. The commands
provide tools for text editing and formatting, Speedtype, dictionaries for
hyphenation and spelling, list processing, and electronic mail.

An important part of the WORDPRO system is the compose command, which is
used for formatting manuscripts, and has programmable requests that make it a
minor programming language.

c-2 AG90-03



APPENDIX D

THE EDM EDITOR

The Edm editor is a simple Multics context editor which is used for
creating and editing ASCII segments. Edm is less sophisticated than Qedx, and
far less sophisticated than Emacs, so if you are already comfortable with one of
these editors, this appendix will not be very useful to you. However, if you
would like to learn how to use a simpler editor, this appendix will help.

Te invoke the Edm editor, you type:
edm pathname

when pathname identifies the segment to be either edited or created.

The Edm editor operates in one of two principal modes: edit or input. 1If
pathname identifies a segment that is already in existence, Edm begins in edit
mode. If pathname identifies a segment that does not exist, or if pathname is
not given, Edm begins in input mode. You ecan change from one mode to the other
by issuing the mode change character: a period (followed by a carriage return)
which is the only character on a line. For verification, Edm announces its mode
by responding "Edit." or "Input." when the mode is entered.

The Edm requests assume that the segment consists of a series of lines and
has a conceptual pointer to indicate the current line. (The "top" and "bottom"
lines of the segment are also meaningful.) Some requests explicitly or
implicitly cause the pointer to be moved; other requests manipulate the line
currently pointed to. Most requests are indicated by a single character,
generally the first letter of the name of the request.

REQUESTS

Various Edm requests and their functions are listed below. Detailed
descriptions of these requests are given later in this section. This list does
not include all of the Edm requests; it identifies only those requests that you
will need as you begin using this editor. For a complete 1listing and
description of all the Edm requests, see the MPM Commands.

- backup

= print current line number

’ comment mode
. mode change
b bottom

d delete

D-1 AG90-03



f find

GUIDELINES

The [

1.

i insert

k kill

1 locate

n next

p print

q quit

r retype

S substitute
t top

v verbose

w write
ollowing list offers helpful suggestions about the use of Edm.

It is useful to remember that the editor makes all changes on a copy
of the segment, not on the original. Only when you issue a W (write)
request does the editor overwrite the original segment with the edited
version. If you type a gq (quit) without a preceding w, the editor
warns you that editing will be lost and the original segment will be
unchanged, and gives you the option of aborting the request.

You should not issue a QUIT signal (press ATTN, BRK, INTERRUPT, etc.)
while in the editor unless you are prepared to lose all of the work
you have done since the last w request. However, if a QUIT signal is
issued, you may return to Edm request level without losing your work
by issuing the program_interrupt command .

If you have a lot of typing or editing to do, it is wisest to
occasionally issue the w request to ensure that all the work up to
that time is permanently recorded. Then, if some problem should occur
(with the system, the telephone line, or the terminal), you only lose
the work done since your last w request.

You should be sure that you have switched from input mode to edit mode
before typing editing requests, including the w and q requests. If
you forget, the editing requests are stored in the segment, ins.ead of
being acted upon. You then have to locate and delete them.

As you become more familiar with the use of Edm, you may conclude that
it provides verification responses more often than necessary, thus
slowing you down. You may use the k (kill) request to "kill" the
verification response. However, once you feel confident enough to use
the k request, you are probably ready to begin wusing the more
sophisticated editor, Qedx. The Qedx editor provides you with a
repertoire of more concise and powerful requests, permitting more
rapid work.

D-2 AG90-03



REQUEST DESCRIPTIONS

The following Edm requests are the ones that you will find most useful as
you begin working with this editor. Examples are included to help you see the
practical use of each request.

Backup (-) Request

The backup request moves the pointer backward (toward the top of the
segment) the number of lines specified, and prints the line to show the location
of the pointer. For example, if the pointer is currently at the bottom line of
the following:

get list (n1, n2);

sum = nl1 + n2;

put skip;

put list ("The sum is:", sum);

and you want the pointer at the line beginning with the word "sum," you type:
1 =2

sum = nl + n2;

If you don't specify a number of lines with the backup request, the pointer
is moved wup one 1line. (Typing a space between the backup request and the
integer is optional.)

Print Current Line Number (=) Request

The print current line number request tells you the number of the line the
pointer is currently pointing to (all the lines in a segment are implicitly
numbered by the system--1, 2, 3,..., n).

Whenever you want to check the implicit line number of the current line,
you issue this request and Edm responds with a line number.

1 =
143

Comment Mode (,) Request

When you invoke the comment mode request, Edm starts printing at the
current line and continues printing all the lines in the segment in comment mode
until it reaches the end of the segment, or until you type the mode change
character (a period) as the only entry on a line.

To print the lines in comment mode means that Edm prints a line without the
carriage return, switches to input mode, and waits for your comment entry for
that line. When you give your comment line and a carriage return, Edm repeats
the process with the next line.

If you have no comment for a particular line, you type only a carriage
return and Edm prints the next line in comment mode. When you want to leave
comment mode and return to edit mode, you type--as your comment--the mode change
character (a period).

D-3 AG90-03



Programmers will find that the comment mode request gives them a fast and
easy way to put comments in their programs.

Mode Change (.) Request

The mode change request allows you to go from input mode to edit mode or
vice versa simply by typing a period as the only character on a line. This
request is also the means by which you leave the comment mode request and return
to edit mode.

For example, when you finish typing information into a segment, you must
leave input mode and go to edit mode in order to issue the write (w) request and
save the information.

! last line of segment
1

Edit.
1 w

Bottom (b) Request

The bottom request moves the pointer to the end of the segment (actually
sets the pointer after the last line in the segment) and switches to input mode.
This request is particularly helpful when you have a lot of information to type
in input mode; if you see some mistakes in data previously typed, you can switch
to edit mode, correct the error, then issue the bottom request and continue
typing your information.

red
oramge
yellow
green

Edit.
1 =2

oramge
' s/m/n/

orange
' b

Input.
! blue

Delete (d) Request

This request deletes the number of lines specified. Deletion begins at the
current line and continues according to your request. For example, to delete
the current line plus the next five lines, you type:

! db
If you issue the delete request without specifying a number, only the

current line is deleted. (That is, you may type either d or d1 to delete the
current line.)

After a deletion, the pointer is set to an imaginary line following the
1ast deleted line but preceding the next nondeleted line. Thus, a change to
input mode would take effect before the next nondeleted line.

D-U AG90-03



Find (f) Request

The find request searches the segment for a line beginning with the
character string you designate. The search begins at the 1line following the
current line and continues, wrapping around the segment from bottom to top,
until the string 1is found or until the pointer returns to the current line;
however, the current 1line itself is not searched. If the string is not found,
Edm responds with the following error message:

Edm: Search failed.

If the string is found and you are in verbose mode, Edm responds by
printing the first line it finds that begins with the specified string.

! f If
If the string is found and you are in verbose mode, Edm responds by

When you type the string, you must be careful with the spacing. A single
space following the find request 1is not significant; however, further leading
and embedded spaces are considered part of the specified string and are used in
the search.

In the find request, the pointer is either set to the line found in the
search or remains at the current line if the search fails. AlSo, if you issue

the find request without specifying a character string, Edm searches for the
string requested by the last find or locate (1) request.

Insert (i) Request

The insert request allows you to place a new line of information after the
current line.

If you invoke the insert request without specifying any new text, a blank
line 1is inserted after the current 1line. If you type text after the insert
request, you must be careful with the spacing. One space following the insert
request 1is not significant, but all other leading and embedded spaces become
part of the text of the new line.

For example, if the pointer is at the top line of the following:

sum = nl + n2;
put list ("The sum is:", sum);

and you issue the following insert request:
! 1 put skip;
the result is:
sum = n1 + n2;

put skip;
put list ("The sum is:",sum);

If you want to insert a new line at the beginning of the segment, you first
issue a top (t) request and then an insert request.

D-5 AG90-03



Kill (k) Request

The kill request suppresses the Edm responses following the change (e),
find (f), locate (1), next (n), and substitute (s) requests. To restore
responses to these requests, you issue the verbose (v) request.

It is recommended that as a new user you not use the kill request until you
are thoroughly familiar with Edm. The responses given in verbose mode are
helpful; they offer an immediate check for you by allowing you to see the
results of your requests.

Locate (1) Request

The locate request searches the segment for a line containing a
user-specified string. The 1locate and find (f) requests are wused in a similar
manner and follow the same conventions. (Refer to the find request description
for details.) With the find request, Edm searches for a line beginning with a
specified string; with the 1locate request, Edm searches for a line
containing--anywhere--the specified string.

Next (n) Request

The next request moves the pointer toward the bottom of the segment the
number of lines specified. If you invoke the next request without specifying a
number, the pointer is moved down one line. When you do specify the number of
lines you want the pointer to move, the pointer is set to the specified line.
For example, if you type:

! n4

the pointer is set to the fourth line after the current line. The Edm editor
responds, when in verbose mode, by typing you-specified line.

Print (p) Request

The print request prints the number of lines specified, beginning with the
current line, and sets the pointer to the last printed line. If you do not
specify a number of lines, only the current line is printed.

If you want to see the current line and the next three lines, you type:

! pi
current line
first line after current line
second
third

In Edm, every segment has two imaginary null lines, one before the first
text line and one after the last text line. When you print the entire segment,
these lines are identified as "No line" and "ECF" respectively.

D-6 AG90-03



Quit (gq) Request

The quit request is invoked when you want to exit from Edm and return to
command level.

For your convenience and protection, Edm prints a warning message if you do
not issue a write (w) request to save your latest editing changes before vou
issue the quit request. The message reminds you that your changes will be lost
and asks if you still wish to quit.

]
¢ q

Edm: Changes to text since last "w" request will be lost if you quit;
do you wish to quit?

If you answer by typing no, you are still in edit mode and can then issue a
write (w) request to save your work. If you instead answer by typing yes, you
exit from Edm and return to command level.

Retype (r) Request

The retype request replaces the current line with a different line typed by
you.

One space between the retype request and the beginning of the new line is
not significant; any other leading and embedded spaces become part of the new
line. To replace the current line with a blank line, you type the retype

request and a carriage return.

Substitute (s) Request

The substitute request allows you to change every occurrence of a
particular character string with a new character string in the number of lines

you 1indicate. If you are in verbose mode (in which Edm prints responses to
certain requests), Edm responds by printing each changed line. If the original
character string is not found in the lines you asked Edm to search, Edm
responds:

Edm: Substitution failed.

For example, if the pointer is at the top line of the following:

get list (n1, n2);

sum = nl + n2;

put skip;

put 1list ("The sum is:", sum);

and you want to search the next three 1lines and change the word '"sum" to
"total," you type:

! sl4/sum/total/

total = n1 + n2;
put list ("The total is:", total);

D-7 AG90-03



The four 1lines searched by the editor are the current 1line plus the next
three. (The search always begins at the current line.) If you do not specify
the number of 1lines you want searched, Edm only searches the current line. If
you do not specify an original string, the new string 1is inserted at the
beginning of the specified line(s).

Notice in the example that a slash (/) was used to delimit the strings.
You may designate as the delimiter any character that does not appear in either
the original or the new string.

Top (t) Request

The top request moves the pointer to an imaginary null line immediately
above the first text line in the segment. (See the print request description
concerning imaginary null lines in Edm.)

An insert (i) request immediately following a top request allows you to put
a new text line above the "original" first text line of the segment.

Verbose (v) Request

he

GcCa

3 3

u
n

143

Edm to print responses to the change (¢), find
ubstitute (s) requests.

=

erbose request causes
e (1), next (n)} d s

0 o

v u
(), t £

’ ’

Actually, vyou do not need to 1issue the verbose request to cause Edm to
print the responses; when you invoke Edm, the verbose request is in effect. The
only time you need to issue the verbose request is to cancel a previously issued
kill (k) request.

Write (w) Request

The write request saves the most recent copy of a segment in a pathname you
specify. (The pathname can be either absolute or relative.)

If you do not specify a pathname, the segment is saved under the name used
in the 1invocation of the edm command. When saving an edited segment without
specifying a pathname, the original segment is overwritten (the previous
contents are discarded) and the edited segment is saved under the original name.

If you do not specify a pathname and you did not use a pathname when you
invoked the edm command, an error message is printed and Edm waits for another
request. If this happens, you should reissue the write request, specifying a
pathname.

D-8 AG90-03



INDEX

MISCELLANEOUS

-absentee control argument 7-4

-all control argument 1-1

-arguments control argument 7-6
-brief control argument 1-1
-brief table control argument 2-5
-first control argument 6-3

-link control argument 2-11

-list control argument 2-3, 6-3, 6-1,
7-3

-long_profile control argument 6-3

-map control argument 2-4, 2-5, B-2

-notify control argument T7-4, 7-6

-optimize control argument B-2

-profile control argument

6-1, 6-2,

-sort control argument 6-3

~-table control argument 2-4, 3-6, 5-6,
5-8

absentee facility 1-1, 4-1
7-4, 7-5, 7-6, 8-5,
accepting arguments T7-
capabilities 7-5
control file 7-1, 7-3, 7-5,
enter abs request command 7-
T-4,77-6
input file 7-1, 7-3, 7-5, 7-6

7-6
1’ 7‘3»

job 1-1, 4-12, 7-1, 7-4, 7-5, 7-6,
8-5, 8-10

output file 7-1, 7-5, 7-6

process 1-4, T7-1

production runs 7-1

absin segment 7-1, 7-3, 7-5, 7-6

absolute pathname A-6, B-5

absout segment T7-1, 7-5, 7-6

access 1-5, 2-6, 2-8, 4-5, 8-u4, 8-1,
B-5, C-1

access control list 1-12, §-4

ACL
see access control list

add search rules command 8-7

address space 1-2, 1-10, 2-6, 3-1,
3-5, 8-4, 8-5, 8-8, B-6

addressing online storage 1-7, 3-2,
A-1

add_search_paths command 3-7, 8-4,
8-7

add_search_rules command 3-3, 8-4

administrative control 1-12, 3-3

alignment of variables B-2

ALM programming language 1-10, 2-1,
2-2, A-4

apl command 8-5

APL programming language 2-1, 2-3,
8-5, A-1

archive

component 2-11, 8-2, 8-6
segment 2-8, 8-2, 8-6
archive command 2-8, 2-8, 8-2, 8-6
attach description #4-9, 4-10

attaching switch 4-2, 4-9, 4-10

automatic storage 5-5
B
background 1-4, 7-1

backup request
see Edm editor requests

basic command 4-10

BASIC programming language 2-1, 8-5,
C-1
batch 1-1, 7-1

binary 2-2, 2-5, 2-9, 4-7, B-=2

bind command 2-11, 8-5

binding
bind command 2-11
binder 2-11

bound segment 2-11
bit count 1-9, 8-2, 8-3, A-6

bottom request
see Edm editor requests

builtin functions

divide B-7
index B=-9
reverse B-9

search B-10

AG90-03



builtin functions (cont) commands (cont)

substr B-9 link 2-11, 3-3, 8-2, 8-3
verify B-10 list 2-11, 8-4, 8-3
list external varlables A-3
bulk data input 4-12 list ref names 3-5, 8-4
move 2-7, 8-3
byte size 1-9 new_proc 1-U, 3-5, 4.2, 8-4
pl1l” 2-4, 2-5, 2-8, 2-9, 2-10, 3-6,
5-6, 6-1, 8-=5
o pl1_abs 7-6, 8-5
print 2-4, 4-11, 5-6, 7-4, 7-5, 7-6,
8-4, 8-5, 8-6, 8-7
cards print attach table 4-11, 8-7
bulk data input 4-12 print search paths 3-7, 8-4, 8-8
control 4-12, 7-3 print search rules 3-2, 8-4, 8-8
conversion U-12 probe 2-7, 5-1, 5-5, 5-6, 5-8, 5-7,
input 4-12, 7-3 -
remote job entry 4-12, 7-3 profile 6-1, 6-2, 6-3, 8-6, B-9
program interrupt 2-7, 8-8, D-2
change_wdir command 3-2, 8-4 progress 2-5, 8-6, 8-10
release 2-7, 5-3, 5-5, 5-8, 8-8,
change wdir_ subroutine 3-2 B-5
rename 2-7, 8-3
character string 3-2, 7-5, A-5, B-2, resolve linkage error 3-7, 8-8
D-5 revert_output T-11
set_search paths 3-7, 8-4, 8-8
cleanup handler B-5, B-6 set search rules 3-3, 8-4, 8-8
start 2-5, 2-7, 3-7, 5-3, 5-5, 8-8
close_file command 4-10, 8-6 status 8-3
stop_cobol run 4-11, 8-6
closing switch U4-4, 4-5, 4.9, U4-10 terminal output 4-11
terminate 3-5, 8-4, A-2
cobol command 8-5 terminate refname 3-5
terminate_segno 3-5
COBOL programming language 2-1, 2-6, terminate_single refname 3-5
2-7, 2-8, 4-2, 4-4, 4-7, k-0, trace 5-1, 5-8, 8-6
4-11, 5-1, 8-5, 8-10 trace stack 5- 5 8-6
unlink 2-11, 8-3
cobol_abs command 7-6, 8-5, 8-9 where search_paths 3-7, 8-5, 8-8
who 7T-4, 8-10
command
level 2-6, 3-6, 4-10, 5-1, 5-3, 5-5, comment mode request
5-8, 6-1, D-T7 see Edm editor requests
line 2-3, 6-2, 7-6, 8-4, 8-7, 8-8
name B-5 compare_ascii command 2-7, 8-2
processor 5-3, 5-5, 5-7, B-5
compiler 1-10, 1-12, 2-3, 2-4, 2-5,
commands 2-6, 2-10, 6-1, 8-5, 8-6, 8-10,
add_search_paths 3-7 B-1, B-2, B-4, B-3
add_search_rules 3-3, 8-4
apl~ 8-5 compiling 1-1, 2-6, 3-5
archive 2-8, 2-8, 8-2, 8-6
basic 4-10 compose command 8-2, 8-5, C-2
bind 2-11, 8-5
change wdir 3-2, 8-1 com_err_ B-5
close file U4-10, 8-6
cobol™ 8-5 com_err_ subroutine A-5, A-6, B-i,
cobol _abs T7-6, 8-5, 8-9 B-5, B-6
compare_ascii 2-7, 8-2
compose 8-2, 8-5, C-2 constant 2-5, B-3

copy 2-T, 8 2

copy_cards 4-11, 4-12, 8-6 control arguments
copy_file 4-11, 8-2, 8-6 -absentee T7-4
create data segment 8-5, A-4 -all 1-1
delete search paths 8-7 -arguments T7-6
delete search_paths 3-7, 8-4 -brief 1-1
delete search rules 3-3, 8-4, 8-7 -brief table 2-5
discard_output 6-2, 8-7 ~-first™ 6-3
display pllio_error 4-11, 8-6, 8-7 -link 2-11
edm 8-2, D-1, D-8 -list 2-3, 6-3, 7-3
enter abs_request 7=-1, 7=3, T-4, -long profile 6-3

T-6, 8-10 -map 2-3, 2-4, 2-5, B-2
exec_com 2-8, 7-5, 7-6, 8-7 -notify 7-4, 7-6
fast™ 8-5, 8-7 -optimize B-2
file_output 4-11, 8-7 -profile 6-1, 6-2
format_cobol_source 2-7, 8-5 -sort 6-3
fortran T7-3, 8-5 -table 2-4, 3-6, 5-6, 5-8
fortran abs 7-6, 8-5, 8-10
gecos 8-8, C-1 control cards 4-12, 7-3
geos_tss C-1
general_ready 2-8, 8-6, 8-8 control characters B-3
get_system search_ rules 8-4, 8-8
indent 2-7, 8-2 controlled security 1-1, 1-12, 2-1,
initiate 3-2, 3-5, 8-4 c-1

io_call 4-2, 4-u, 4-5, L4-10, 8-7

i-2 AG90-03



controlled sharing 1-1, 1-4,
1-10, 1-12, 2-11, B-3

1-5,

copy command 2-7, 8-2
copy_cards command 4-11, 4-12, 8-6
copy file command 4-11, 8-2, 8-6

core
see memory

core image 1-2

create_data_segment command 8-5, A-14,

segment_ subroutine A-%,

cu_ subroutine B-4
cu_$arg_count B-4
cu_$arg_count subroutine B-4
cu_$arg_ptr B-5
cu_$arg_ptr subroutine B-5

cv_dec_ subroutine B-4, B-10

daemon 1-4, 8-3, 8-5, 8-9

data base manager subsystem C-1

debugging 1-1, 2-2, 2-3, 2-4, 2-6,
3-2, 5-1, 5-5, 5-6, 5-8, 6-1, 7-1,
8-

debugging tools
see probe

default 2-3, 4-2, 4-4, 4-5, 4.9, 5-6,
8-4, 8-7, 8-8, A-2, B-2
2-5

definition section

delete request
see Edm editor requests

delete_search_paths command 3-7, 8-,
8-7
delete_search rules command 3-3, 8-U4,

8-7
designing 2-1
detaching switch 4-2, 4-5, 4-10
device independence 14-1

direct intersegment references A-3
directory 2-3, 2-4, 2-11, 3-2, 3-3,
7-1, 8-3, 8-4, 8-7, 8-8, 8-9, A-6,
B-4, B-5
home 3-2, 7-1
working 2-3, 2-4, 2-11, 3-2, 3-3,
4-8, 8-4, 8-7, 8-8

discard_output command 6-2, 8-7

display pllio_error command 4-11, 8-6,

divide builtin funetion B-7

documenting 2-1, 2.7

i-3

dollar sign 3-2, A-4, B-J}

dynamic linking 1-1,
3-5, 3-7, A-dU

1-10, 2-5, 3-1,

usage 3-5
E
editing 1-10, 2-2, 2-5, 8-2, B-3, C-2,
D=2
editor 2-2, 2-8, 3-6, 44, 7-4, B-3,
B-5, D=1
Edm 2-2, 8-2, B-1, D-1
Emaes 2-2, 8-2
Qedx 2-2, 2-8, 2-9, 2-10, 3-1, 3-6,
7-4, 8-2

Ted 2-2, 8-2
edm command 8-2, B-1, D-1, D-8

Edm editor
requests
backup
bottom
comment mo
delete D-4
find D=5
insert D=5
kill D-6
locate D=6
mode change
next D-6
print D-6
print current line number
quit D=7
retype D-7
substitute
top D-8
verbose
write

8-2, B-1, D-1
D-2

ooon

2,
1,
3
4
de D=3

D-4
D-3

D-7

D-8
D-8
Emacs editor 2-2, 8-2
enter abs_request command 7-1, 7-3,

T-4,77-6, 8-10
entry point
B-4, B-6

1-10, 3-2, 3-6, 5-6, A-5,

entryname
A-6

2-2, 2-3, 2-6, 8-5, 8-8,

1-4, 1- =5

2
3-7, 4-5
8-6, 8-8
B-5, D-4

error_output switch 4-5, 4-11

execution 1-2, 1-4, 1-10, 2-1, 2-3,
2-5, 2-6, 4-12, 5-2, 5-3, 5-6,
6-3, 7-1, 7-3, 8-5, 8-6, 8-7, 8-8,
A~

execution point 1-4

exec_com command 2-8, 7-5, 7-6, 8-7

expand_pathname subroutine A-6, B-5

external references 1-10, 2-11, 3-1,
A-4

external static variables B-4

fast command 8-5, 8-7

fast subsystem 8-5, 8~7, C-1

AG90-03



fault 1-10, 2-5, 2-11, 3-7, 5-6, 8-6, 1
8-8, B-T
linkage 1-10, 1-11, 2-11, 3-7, 8-6,
8-8 I/0
page 2-5, B-7 see input/output processing
file 2-2, 2-9, 3-1, 3-3, u-1, 4-4, 1/0 module U4-1, 4-2, 8-6

4-8, 4-9, 4-11, 7-1, 7-3, 7-4, vfile_ 4-9, 4-10, 4-11

8-2, 8-3, 8-5, 8-7, 8-10, B-5,

Cc=2 I/0 switeh U4-1, 4-2, 4-U4, 4-5, 4.9,
sequential U4-4 4-11, 7-1, 8-2, 8-3, 8-5, 8-6,
stream 4-1, 4-4, 4.9 8-7, 8-9, B-4, D-4

file output command 4-11, 8-7 indent command 2-7, 8-2
find request index builtin function B-9

see Edm editor requests
info segment 2-8, 3-7, 8-9
format_cobol_source command 2-7, 8-5
initiate command 3-2, 3-5, 8-4
fortran command 7-3, 8-5

FORTRAN programming language 1-1, 2-1,
2-2, 2-8, 4-2, 4-4, 4-7, 4-10, input/output processing 1-1, 2-2, 2-8,
5-1, 8-5, 8-6, 8-10, A-1 2-9, 2-10, 4-5, 4-8, 4-9, 4-10,
4-11, 4-12, 7-1, 8-2, 8-5, 8-T,
fortran_abs command T7-6, 8-5, 8-10 8-8, B-2, B-3, B-4, B-5
modules U4-1, 4-2, 4-5, 8-6
switches 4-1, 4-2, 4-4, 45, U4-9,
G y-11, 7-1, 8-2, 8-3, 8-5, 8-6,
8-7, 8-9, B-4, D-4
attaching 4-2, 4-9, 4-10
gates B-l ‘ closing U4-4, 4-5, 4-9, U4-10
detaching 4-2, 4-5, 4-10
gcos command 8-8, C-1 error ouput 4-5
error output 4-11
gcos subsystem 8-8, C-1, C-2 opening U4-2, 4-4, 4-9, 4-10
user input U-5, U4-11
gcos_tss command C-1 user_io U4-5, 4-11

user_output 4-5, i4-11, 8-5, B-T7
general_ready command 2-8, 8-6, 8-8
insert request

get_system_search_rules command 8-4, see Edm editor requests

8-8 interactive 1-1, 1-4, 2-4, 5-8, 7-1,
get_temp_segments B-6 8-5, B-1
get_temp_segments_ subroutine B-6 internal automatic variables A-2
graphics subsystem C-2 internal static variables A-2, B-3

interpreted language 2-3, 8-5
intersegment link 2-11
hardware 1-5, 1-9, 2-3, i4-1, B-2, B-3 ioa_ subroutine B-4, B-7

hes_ subroutine 3-1, 3-2, B-4

hes $initiate A-6 iox subroutine Uu-2, 4-U, 4-5, 412,
- ~ B-8
hes_$initiate subroutine 3-1, 3-2,
A-6, B-6, B-10 iox_$get_line subroutine B-8
hes_g$initiate_count subroutine 3-2, iox_$user_input B-8

A-6, B-6, B=T
iox_$user_input subroutine B-8
hes $make_entry subroutine 3-2
- jo call command 4-2, A4-4, u4-5, U4-10
hes_$make_ptr subroutine 3-2, A-5 -

hes_$make_seg subroutine 3-2 J

hes $terminate_noname subroutine A-6,
~ B-10 JCL
see job control language
help request
see probe requests job control language 1-1, 1-7, U-2

higher level language 2-3, 2-6

home directory 3-2, 7-1

i-l AG90-03



kill request
see Edm editor requests

L
language 1-1, 2-1, 2-2, 2-3, 2-5, 2-6,
3-7, 4-2, 8-6, A-1, B-2, B-3, C-1
higher level 2-3, 2-6
interpreted 2-3;, 8-5
machine 2-3
programming 2-2, C=1
ALM 1-10, 2-1, 2-2, A-l4
APL 2-1, 2-3, 8-5, A-i
BASIC 2-1, 8-5, C-1
coBoL 2-1, 2-6, 2-7, 2-8, 4-2,
4-4, k-7, R4-10, 4-11, 5-1,
8-5, 8-10
FORTRAN " 1-1, 2-1, 2-2, 2-8, 4-2,
4-4, 4-7, 4-10, 5-1, 8-5, 8-6,
8-10, A-1
PL/T 1-1, 2-1, 2-2, 2-5, 2-7, 2-8,
2-9, 3-6, 4-2, u4-4, u.10,
4-11, 5-1, 6-2, 8-5, 8-6,
8-10, A-1, A-2, B-1, B-2, B-3,
B-4, B-5, B-6, C-2
source 2-5, 6-3, 8-6
library 1-10, 3-2, 3-7, A-1, A-6, B-2,
B-3, B-4, B-5
link
intersegment 2-11

storage system 2-11, 8-2, 8-3
link command 2-11, 3-3, 8-2, 8-3

linkage editor
see loading

linkage fault
8-6, 8-8

1-10, 1-11, 2-11, 3-7,

linkage section 2-5

linking 1-10, 2-5,
3-6, 3-7, 8-2,

LINUS
see logical inquiry and update
subsystem
3'3 ’ 8-3

2-3, 2-4, 6-3, 7-3,

3-3,

"8-8, B-4

1, 3-1
’ 8°6’

2-1
8-3

list command

listing segment

list_external_variables command A-3
list_ref names command 3-5, 8-4

list_requests request
see probe requests

load module
see loading
loading 1-10, 2-5

locate request
see Edm editor requests

logical inquiry and update subsystem
c-2

machine language 2-3

making a segment known
8-4, B-5

1-5, 2-7, 3-1,

MDBM
see data base manager subsystem

memory 1-1, 1-2, 1-7, 1-10, 7-5, 8-6,
8-8, A-1, B-1, B-3, B-6, C-1
merge subsystem C-2

mode change request
see Edm editor requests

move command 2-7, 8-3

MRPG
see report program generator
subsystem

named offsets A-4

naming conventions 2-3

new_proc command 1-4, 3-5, 4.2, 8-y
next request
see Edm editor requests

null string A-5

object map 2-5

object name 2-4
object program
see object segment

object segment 2-3, 2-5, 2-6, 2-7,

2-11, 3-6, 5-6, 8-5, A-4, B-3
section

definition
linkage 2-5
object map 2-5
static 2-5, A-2
symbol 2-5
text 2-5

2-5

online 2-4, 2-8, 7-1, 8-1, 8-6, A-1

opening modes 4-4

opening switch 4-2, 4-4 4.9, 4-10

options (constant) B-3

options (variable) B-2

overlay defining B-3

v

page 1-9, 2-5, 8-6, 8-10, B-7

page fault 2-5, B-7
3-6, 8-4, A-6, B-5, D-1, D-8

A-6, B-5
A-6, B-5

pathname
absolute
relative

pathname_ B-6

pathname_ subroutine B-6

AG90-03



performance measurement tools
see profile faecility
=1

PL/I programming language 1-1,

2-1,
2-2, 2-5, 2-7, 2-8, 2-9, 3-6, 4-2,
4ok, 4-10, 4-11, 5-1, 6-2, 8-2,
8-5, 8-6, 8-10, A-1, A-2, B-1,
B-2, B-3, B-4, B-5, B-6, C-2

pl1 command 2-4, 2-5, 2-8, 2-9, 2-10,
3-6, 5-6, 6-1, 8-5

pl1_abs command 7-6, 8-5

position request
see probe requests
precision of variables B-2, B-3

print command 2-4%, 4-11, 5-5, 5-6,
7-4, 7-5, 7-6, 8-4%, 8-5, 8-6, 8-7

print
see

current line number request
Edm editor requests

print request
see Edm editor requests

8-7
3-7, 8-4,

print_attach table command 4-11,

print_search_paths command

print_search_rules command

3-2, 8-1,

probe 2-7, 5-1, 5-5, 5-6,
requests

help 5-8
list requests
position 5-7
quit 5-8
source 5-7
stack 5-7
symbol 5-7
value 5-7

5-8

5-8

probe command 2-7, 5-1, 5-5, 5-6, 5-8,

process 1-12, 3-2, 3-5, 4-5, 5-1, 7-1,
8-1, 8-u, 8-6, 8-7, 8-8, 8-9, B-2,
B-3

processor 1-2, 1-10, 1-12, 5-1, 5-3,
5-5, B-5

production run 7-1

profile command 6-1, 6-2, 6-3, 8-6,

B-9
profile facility 6-1, 6-3

programming 1-12, 2-1, 2-2, 7-1, B-1,

C-1
programming environment 1-2, 1-l,
1-12, 2-1, 2-8, 4-8, 5-1, 5-5,
7-1, 8-8, C-1
programming language 2-2, C-1
program_interrup command 8-8
program_interrupt command 2-7, D=2
progress command 2-5, 8-6, 8-10

pure procedure 2-6, B-3

Qedx editor 2-2, 2-8, 2-9, 2-10, 3-1,
3-6, T-4, 8=2

quit request
see Edm editor requests
see probe requests

QUIT signal
D-2

2-5, 2-6, 5-2, 5-5, B-5,

ready message 2-5, 2-6, 2-8, 3-6, 6-3,

8-6, 8-8

record 1-5, U4-1, U4-11, 4-12, 5-1, 6-3,
§-2, B-2, B-5, C-2

recursive procedure 2-6

reference name 3-1, 3-2, 3-3, A-6,

B-6
reference to named offsets A-4
references
external 1-10, 2-11, 3-1, A-4

relative pathname A-6, B-5

release command 2-7, 5-3, 5-5, 5-8,

8-8, B-5

release_temp segments B-6

release_temp_segments_ subroutine B-6,
B-T0

remote job entry 4-12, 7-3

rename command 2-7, 8-3

report program generator subsystem

resolve linkage_error command 3-7,
8-8

restarting suspended programs 2-7,
3-7, 5-5

retype request
see Edm editor requests

reverse builtin function B-9
revert_output command 4-11

ring structure B-l

search builtin funetion B-10
8-4, 8-7, 8-8

3‘11 3‘2, 3‘31 3'71 8‘“1

search paths

search rules

8-7, 8-8
segment
absin 7-1, 7-3, 7-5, 7-6
absout 7-1, 7-5, 7-6

-8, 8-2, 8-6

archive
bound 2-11
info 2-8, 3-7, 8-9

listing 2-3, 2-4, 6-3, 7-3, B-2
number 1-7, 2-7, 3-3, B-6

AG90-03



segment (cont)

object 2-3, 2-5, 2-6, 2-7, 2-11,
3-6, 5-6, 8-5, A-4, B-3

size of B-3

source 2-2, 2-3, 2-7, 8-2, 8-5, B-2,
c-2

stack 5-1

structured data A-5

segment number 1-7, 2-7, 3-3, B-6
segments
temporary B-3

sequential file U4-4

set_search _paths command

3-7, 8-4,

set_search_rules command 3-3, 8-4,

snapping a link

1-10, 1-11, 2-11, 3-5,

sort subsystem C-2
source language 2-5, 6-3, 8-6

source program
see source segment

source request
see probe requests

source segment 2-2, 2-3, 2-7, 8-2,

B-2, C-2
stack 5-1, 5-2, 5-3, 5-5, 5-7, 8-6,
B-5
frame 5-2, 5-5, B-5

stack request
see probe requests

standard format 2-6
start command 2-5, 2-7, 3-7, 5-3, 5-5,

8-8
start_up.ec 2-8, T7-1
static section 2-5, A-2
static storage 5-5

status command 8-3

stop_cobol_run command 4-11, 8-6

storage 1-7, 1-12, 2-1, 2-11, 4-8,
5-5, 8-3, 8-6, 8-7, 8-9, A-1, A-2,
B-1, B-2, B-3, B-5, C-1

automatic
5-5

5-5
statie

storage system link 2-11, 8-2, 8-3

stream file U4-1, 4-4, 4.9

structured data segment A-5
subroutines
change_wdir 3-2

com_err_ A=5, A-6, Br4, B-5, B-6

create data segment  A-4

cu B-y ~ -

cv_dee  B-4, B-10

expand pathname A-6, B-5

hes_ 3-1, 3-2,7B-4

hes $initiate 3-1, 3-2, B-6, B-10

hes_$initiate count 3-2, A-6, B-6,
B-7

hes $make entry 3-2

hes_$make ptr 3-2, A-5

i-7

subroutines (cont)
hes_$make_seg 3-2

hes_$terminate_noname A-6, B-10
ioa_ B-4, B-7
iox 4-2, 4-4, 45, 4-12, B-8

iox_$get_line B-8

substitute request
see Edm editor requests

substr builtin function B-9
subsystem
data base manager C-1
fast 8-5, 8-7, C-1
gcos 8-8, C-1, C-2
graphics C-2
logical inquiry and update C-2
merge C-2
report program generator (-2
sort C-2
wordpro C-2
suffix 2-2, 2-3, 2-4, 6-3, 7-1, 7-5

symbol request
see probe requests
symbol section 2-5

symbol table 2-4, 2-5, 5-6, 5-7

system 1-1, 1-12, 2-1, 2-11, 3-2, 3-3,
4-1, 4-4, 5.5, 5.7, 7-4, 8-2, 8-6,
8-7, 8-8, 8-1, A-5, B-1, B-3, B-l,
Cc-1
T
Ted editor 2-2, 8-2

temporary segment B-5
terminal

session 1-1, 2-8, 2-9,

using for I1/0 2-2, 2-6, 2-8,

4-5, 7-1, 8-7, 8-8, B-4,

terminal output command 4-11
terminate command 3-5, 8-4, A-2
terminate_refname command 3-5
terminate_segno command 3-5
terminate_single refname command 3-5

terminating segments
A-6, B-5

1-7, 3-3, A-2,

text section 2-5

top request
see Edm editor requests

trace command 5-1, 5-8, 8-6

trace_stack command 5-5, 8-6

unlink command 2-11, 8-3
user_input switch U4-5, 4-11
user_io switeh 4-5, 4-11

user_output switeh 4-5, 4-11, 8-5,
B-7

AG90-03



value request
see probe requests
variables
alignment B-2
external static A-3, B-lU
internal automatic A-2
internal static A-2, B-3
precision B-2, B-3, B-7

verbose request
see Edm editor requests

verify builtin function B-10

vfile I/0 module 4.9, 4-10, 4-11

virtual memory 1-4, 1-5, 1-7, 1-10,
B-1, B-3, B-6, C-1

W

where search paths command 3-7, 8-5,

who command T-4
word 1-9

wordpro subsystem C-2

working directory 2-3, 2-4, 2-11, 3-2,

3-3, 8-4, 8-7, 8-8

write request
see Edm editor requests

writing 2-1, A-1, B-2

i-8

AG90-03



HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

ORDER NO. AG90-03
ore | LEVEL 68

INTRODUCTION TO PROGRAMMING ON MULTICS

DATER | JULY 1981

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

,—\ Your comments will be investigated by appropriate technical personnel
L/ and action will be taken as required. Recezipt of a!! forms will be

acknowledged; however, if you require a detailed reply, check here. D

FROM: NAME DATE

TITLE
COMPANY

ADDRESS




PLEASE FOLD AND TAPE—
NOTE: U.S. Postal Service will not deliver stapled forms

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell



Honeywell

Honeywell information Systems
In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 155 Gordon Baker Road, Willowdale, Ontario M2H 3N7
In the U.K.: Great West Road, Brentford, Middiesex TW8 9DH
In Australia: 124 Walker Street, North Sydney, N.S.W. 2060
In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

32397, 5C981, Printed in U.S.A.

AG90-03



	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07.0
	4-07.1
	4-07.2
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	6-01
	6-02
	6-03
	6-04
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	i-01
	i-02
	i-03
	i-04
	i-05
	i-06
	i-07
	i-08
	replyA
	replyB
	xBack

